ALTERNATING CURRENT & ELECTROMAGNETIC WAVES THEORY

- The constant value of dc which produces same heat through a resistive element, as due to the alternating current, is known as root mean square value of ac.
- 240 V ac is the rms value of ac voltage. The amplitude of this voltage is $V_M = 240 \times \sqrt{2} = 340$ volt.
- The power rating in ac circuit is the average power rating.
- Power consumed in a circuit is non-negative.
- Phase relationships in a.c. circuits is best represented by phasor diagram. A phasor is a vector which rotates with the angular velocity ω . The magnitude of phasor is the peak value of voltage or current (V_0 or I_0).
- In purely resistive AC circuit, voltage and current are in the same phase V = V_o sin ωt and I = I_o sin ωt, where I_o = V_o/R.
- In purely resistive circuit, average power loss = $I_{rms}^2 \times R$, $I_{rms} = \frac{I_0}{\sqrt{2}}$ similarly $V_{rms} = \frac{V_0}{\sqrt{2}}$
- The only element which dissipates energy in ac circuit is resistor (R).
- In purely inductive circuit, inductive reactance $X_L = 2\pi f L = \omega L \text{ voltage is ahead of current by } \frac{\pi}{2},$ $V = V_o \text{ sin } \omega t, \ I = I_o \text{ sin } \left(\omega t \frac{\pi}{2}\right), \ I_o = \frac{V_o}{X_L}. \ \underline{\textit{In this circuit,}}$ $\underline{\textit{average power loss} = \textit{O}}.$
- In purely inductive or capacitive circuit, $\cos \phi = 0 \Rightarrow \phi = \frac{\pi}{2}$. Average power loss is zero. Although current is flowing in the circuit. Such a current is known as <u>wattless current</u>.
- In AC L-R circuit, total voltage $V = \sqrt{V_R^2 + V_L^2}$.

- In purely capacitive A/C circuit, capacitive reactance $X_C = \frac{1}{2\pi f} = 1/\omega. \text{ The current leads the applied voltage by } \pi/2$ or 90°. V = V₀ sin ω t, I = I₀ sin $\left(\omega + \frac{\pi}{2}\right)$, I₀ = $\frac{V_0}{X_c} = 2\pi f V_0 m V = V_0 \sin \omega t$, I = I₀ sin $\left(\omega t + \frac{\pi}{2}\right)$, I₀ = $\frac{V_0}{X_c} = 2\pi f V_0$. The average power loss per cycle is ZERO.
- In AC C-R circuit, total voltage V = $\sqrt{V_R^2 + V_C^2}$
- A circuit containing an inductor L and a capacitor (initially charged) with no ac source and no resistors, exhibits free oscillations. The charge of the capacitor is given by the differential equation $\frac{d^2q}{dt^2} + \frac{1}{LC}q = 0$.

The sum of energy of capacitor and inductor is constant.

- For a given RLC circuit driven by voltage $V = V_o \sin \omega t$, the current is given by $I = I_o \sin (\omega t + \phi)$ where $I_o = \frac{V_m}{\sqrt{R^2 + (X_C X_L)^2}}$ and $\phi = \tan^{-1} \frac{X_C X_L}{R}$, impedance $z = \sqrt{R^2 + (X_C X_L)^2}$.
- The phase difference between voltage across L and voltage across capacitor C, is 180° Thus V_{LC} = V_L - V_C.
- The voltage in series LCR A/C circuit is given by

$$V = \sqrt{V_{R}^{2} + (V_{L} - V_{C})^{2}}.$$

- The average power consumed = $V_{rms} \times I_{rms} \times \cos \phi$, where $\cos \phi$ is the power factor.
- In series LCR circuit, at resonance, $X_L = X_C$, the impedance Z is minimum and equal to R. In this case, the source frequency $\omega = \frac{1}{\sqrt{LC}}$ which equals resonant frequency.
- The quality factor $Q = \omega_0 \frac{L}{R} = \frac{1}{\omega_0 CR} = \frac{1}{R} \sqrt{\frac{1}{C}}$ is an indicator or "sharpness of resonance."

- The power factor in a RLC circuit is a measure of how close the circuit is to consuming maximum power.
- A step-up transformer converts low ac voltage to high ac voltage but reduces the current.
- A step-down transformer converts high ac voltage to a low ac voltage but increases the currents accordingly.
- In transformer, the primary and secondary voltage are given by $V_S = \left(\frac{N_S}{N_P}\right) V_P$ and the current are given by $I_S = \left(\frac{N_P}{N_S}\right) I_P$. In step up transformer, $N_S > N_P$ and step-down transformer $N_S < N_P$.
- A generator converts mechanical energy into electrical energy, whereas an electric motor converts electrical energy into mechanical energy.
- A transformer does not violate the law of conservation of energy. A step-up transformer changes low voltage to a high voltage but reduces the current in the same proportion.

Four Maxwell's Equations

1.
$$\oint \vec{E} \cdot \vec{ds} = \frac{q}{\epsilon_0}$$

2.
$$\oint \overrightarrow{B} \cdot \overrightarrow{ds} = 0$$

3.
$$\oint \vec{E} \cdot \vec{dI} = -\frac{d}{dt} \phi_B = \frac{-d}{dt} \int \vec{B} \cdot \vec{ds}$$

4.
$$\oint \vec{B} \cdot \vec{dl} = -\mu_0 (I_C + I_D) = \mu_0 (I_C + \epsilon_0 \frac{d\phi_E}{dt})$$

- Displacement current $I_D = \epsilon_0 \frac{d}{dt} \varphi_E = \epsilon_0 \frac{d \oint \vec{E} \cdot \vec{ds}}{dt} = \frac{CdV}{dt}$
- $E_y = E_0 \sin(\omega t kx)$ and $B_z = B_0 \sin(\omega t kx)$

•
$$C_{\mathrm{vacuum}} = \frac{1}{\sqrt{\mu_0 \epsilon_0}}; \ C_{\mathrm{medium}} = \frac{1}{\sqrt{\mu_r \mu_0 \epsilon_r \epsilon_0}}$$

$$\bullet \qquad \quad \frac{E_0}{B_0} = \frac{E_{RMS}}{B_{RMS}} = \frac{E}{B} = c$$

• Average intensity of wave I_{av} = average energy density (speed of light) of

$$I_{av} = U_{av} \cdot c = \frac{E_0 B_0}{2\mu_0} = \frac{E_0^2}{2c\mu_0} = \frac{cB_0^2}{2\mu_0}$$

- Instantaneous energy density $u = \frac{1}{2}\epsilon_0 E^2 + \frac{B_0^2}{2\mu_0} = \epsilon_0 E^2 = \frac{B^2}{\mu_0}$
- Average energy density $u_{av} = \frac{1}{4} \epsilon_0 E_0^2 + \frac{B_0^2}{4\mu_0} = \frac{\epsilon_0 E_0^2}{2} = \frac{B_0^2}{2\mu_0}$
- Energy = (momentum). c or U = Pc
- Radiation pressure

$$=\frac{\text{Intensity}}{c}$$
 (when the wave is completely absorbed)

=
$$\frac{2(Intensity)}{c}$$
 (when the wave is completely reflected)

• Intensity of wave from a source at a distance r from it is proportional to

$$\frac{1}{r^2}$$
 (for a point source), $\frac{1}{r}$ (for a line source)

For a plane source intensity is constant & independent of r.