Conic Section THEORY

1.1 General Equation

 $ax^2 + 2hxy + by^2 = 0$ is a homogeneous equation of second degree that represents two straight line passing through the origin. The individual equations of these straight lines can be obtained by factorising the expres sion $ax^2 + 2hxy + by^2 = 0$ into two real linear factors. The equation represents two lines in real XY plane only if $h^2 - ab \ge 0$.

1.2. Slopes of the lines

$$ax^2 + 2hxy + by^2 = 0$$

Let m_1, m_2 be the slopes of the lines through origin expressed by

$$ax^2 + 2hxy + by^2 = 0 (i)$$

 \Rightarrow The lines are $y = m_1 x$ and $y = m_2 x$ and the equation of pair is $(y - m_1 x) (y - m_2 x) = 0$

$$\Rightarrow m_1 m_2 x^2 - xy (m_1 + m_2) + y^2 = 0$$
 ... (ii)

$$\Rightarrow \frac{m_1 m_2}{a} = \frac{m_1 + m_2}{-2h} = \frac{1}{b}$$

$$\Rightarrow$$
 $m_1 + m_2 = \frac{-2h}{h}$ and $m_1 m_2 = \frac{a}{h}$

We can solve for m_1 and m_2 to get

$$m_1 = \frac{-h + \sqrt{h^2 - ab}}{b} \quad \text{and} \quad m_2 = \frac{-h - \sqrt{h^2 - ab}}{b}$$

Note: Again that $h^2 - ab \ge 0$ is the necessary condition for the equation representing real lines.

Illustration - 1 What does the equation $x^2 - 5xy + 4y^2 = 0$ represents?

SOLUTION:

$$x^2 - 5xy + 4y^2 = 0$$

$$\Rightarrow x^2 - 4xy - xy + 4y^2 = 0 \Rightarrow (x - 4y)(x - y) = 0$$

 \Rightarrow The equation represent two straight lines through origin whose Equations are : x - 4y = 0 and x - y = 0.

Conic Section

1.3 Angle between the lines

$$ax^2 + 2hxy + by^2 = 0$$

If the acute angle between lines $ax^2 + 2hxy + by^2 = 0$

then
$$\tan \theta = \left| \frac{m_1 - m_2}{1 + m_1 m_2} \right| = \left| \frac{\sqrt{(m_1 + m_2)^2 - 4m_1 m_2}}{1 + m_1 m_2} \right| = \frac{\sqrt{\frac{4h^2}{b^2} - \frac{4a}{b}}}{|1 + a/b|}$$

$$\Rightarrow \quad \theta = \tan^{-1} \left| \frac{2\sqrt{h^2 - ab}}{a + b} \right|$$

Hence we also have following results.

- (i) The lines $ax^2 + 2hxy + by^2 = 0$ are mutually perpendicular if and only if a + b = 0. i.e. coefficient of $x^2 +$ coefficient of $y^2 = 0$.
- (ii) The lines $ax^2 + 2hxy + by^2 = 0$ are coincident if $h^2 ab = 0$.

1.4 Angle bisector of lines

$$ax^2 + 2hxy + by^2 = 0.$$

Let m_1 , m_2 be the slopes of lines $ax^2 + 2hxy + by^2 = 0$.

- \Rightarrow lines are $y m_1 x = 0$ and $y m_2 x = 0$ $[m_1 + m_2 = -2h/b \text{ and } m_1 m_2 = a/b]$
- \Rightarrow bisectors of angles are :

$$\frac{y - m_1 x}{\sqrt{1 + m_1^2}} = \pm \left(\frac{y - m_2 x}{\sqrt{1 + m_2^2}}\right) \implies \left(1 + m_2^2\right) \left(y - m_1 x\right)^2 - \left(1 + m_1^2\right) \left(y - m_2 x\right)^2 = 0$$

On simplification we get:

$$-y^{2}(m_{1}+m_{2})+x^{2}(m_{1}+m_{2})-2xy(1-m_{1}m_{2})=0$$

$$\Rightarrow x^2 - y^2 = \frac{2xy(1 - m_1 m_2)}{m_1 + m_2}$$

$$\Rightarrow x^2 - y^2 = \frac{2xy(1 - a/b)}{-2h/b}$$

$$\Rightarrow$$
 The equation of Bisectors is $\frac{x^2 - b^2}{a - b} = \frac{xy}{h}$.

1.5 Pair of lines perpendicular to the lines

Let L_1 and L_2 be the lines $ax^2 + 2hxy + by^2 = 0$.

Let P_1 be the line Perpendicular to L_1 and P_2 be the line perpendicular to L_2 .

We have to find equation of P_1P_2 .

Let
$$L_1$$
 be $y - m_1 x = 0$ and L_2

Let
$$L_1$$
 be $y - m_1 x = 0$ and L_2 be $y - m_2 x = 0$
 $\Rightarrow P_1$ is $m_1 y + x = 0$ and P_2 is $m_2 y + x = 0$

$$\Rightarrow$$
 Pair P_1P_2 is $(m_1y + x)$. $(m_2y + x) = 0$

$$\Rightarrow m_1 m_2 y^2 + xy (m_1 + m_2) + x^2 = 0$$

$$\Rightarrow \frac{a}{b}y^2 + xy\left(-\frac{2h}{b}\right) + x^2 = 0$$

$$\Rightarrow bx^2 - 2hxy + ay^2 = 0 \text{ is the equation of the pair of lines perpendicular to the pairs of lines}$$
$$ax^2 + 2hxy + by^2 = 0.$$

By interchanging the coefficients of x^2 and y^2 and reversing the sign of the xy term, we can get equation Note: of P_1P from L_1L_2 .

Illustration - 2 Find the area formed by the triangle whose sides are $y^2 - 9xy + 18x^2 = 0$ and y = 9.

SOLUTION:

$$y^2 - 9xy + 18x^2 = 0$$

$$\Rightarrow$$
 $(y-3x)(y-6x)=0$

$$\Rightarrow$$
 The sides of the triangle are : $y - 3x = 0$ and $y - 6x = 0$ and $y - 9 = 0$.

By solving these simultaneousy, we get the vertices as:

$$A \equiv (0,0)$$
 ; $B \equiv (3/2,9)$; $C \equiv (3,9)$

Area =
$$\frac{1}{2} \begin{vmatrix} 0 & 0 & 1 \\ \frac{3}{2} & 9 & 1 \\ 3 & 9 & 1 \end{vmatrix} = \frac{27}{4}$$
 sq. units.

Illustration - 3 Find the angle between the lines $x^2 + 4y^2 - 7xy = 0$.

SOLUTION:

$$\theta = \tan^{-1} \frac{2\sqrt{h^2 - ab}}{a + b} = \tan^{-1} \left[\frac{2\sqrt{\left(\frac{-7}{2}\right) - 1(4)}}{1 + 4} \right] = \tan^{-1} \left[\frac{\sqrt{33}}{5} \right].$$

Conic Section JEE MAIN

Illustration - 4 Find the equation of pair of lines through origin which form an equilateral triangle with the lines Ax + By + C = 0. Also find the area of this equilateral triangle.

SOLUTION:

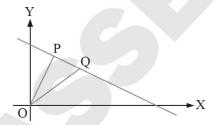
Let PQ be the side of the equilateral triangle lying on the line Ax + By + C = 0. Let m be the slope of the line through origin and making an angle of 60° with Ax + By + C = 0.

 \Rightarrow m is the slopes of OP or OQ.

As the triangle is equilateral, the line Ax + By + C = 0 makes an angle 60° with OP and OQ.

$$\Rightarrow \tan 60^\circ = \left| \frac{m - (-A/B)}{1 + m \left(\frac{-A}{B} \right)} \right|$$

$$\Rightarrow 3 = \left(\frac{mB + A}{B - mA}\right)^2$$



This quadratic will give two values of m which are slope of OP and OQ. As OP and OQ pass through origin, their equations can be taken as:

$$y = mx$$
 ...(ii)

As we have to find the equation of OP and OQ, we will not find values of m but we will eliminate m between (i) and (ii) to directly get the equation of the pairs of lines: OP and OQ.

$$\Rightarrow \left(\frac{By/x + A}{B - yA/x}\right)^2 \Rightarrow 3 = \left(\frac{By + Ax}{Bx - yA}\right)^2$$

$$\Rightarrow$$
 3 $(B^2x^2 + y^2A^2 - 2ABxy) = (B^2x^2 + A^2x^2 + 2ABxy)$

 \Rightarrow $(A^2 - 3B^2) x^2 + 8ABxy + (B^2 - 3A^2) y^2 = 0$ is the pair of lines through origin making an equilateral triangle (OPQ) with Ax + By + C = 0.

Area of
$$\triangle OPQ = \frac{\sqrt{3}}{4} (\text{side})^2 = \frac{\sqrt{3}}{4} \left(\frac{P}{\sin 60} \right)^2 \text{ [where } P = \text{altitude]}$$

$$\Rightarrow \text{area} = \frac{\sqrt{3}}{4} \times \frac{4}{3} P^2 = \frac{1^2}{\sqrt{3}} P^2 = \frac{1}{\sqrt{3}} \left[\frac{|C|}{\sqrt{A^2 + B^2}} \right]^2 = \frac{C^2}{\sqrt{3} (A^2 + B^2)}$$

Illustration - 5 If a pair of lines $x^2 - 2pxy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ is such that each pair bisects the angle between the other pair, prove that pq = -1.

SOLUTION:

The pair of bisectors for $x^2 - 2pxy - y^2 = 0$ is

$$\frac{x^2 - y^2}{1 - (-1)} = \frac{xy}{-p}$$

$$\Rightarrow$$
 $x^2 - y^2 = \frac{2xy}{-p}$

$$\Rightarrow x^2 - y^2 = \frac{2xy}{-p} \Rightarrow x^2 + \frac{2}{p}xy - y^2 = 0$$

As $x^2 + \frac{2}{n}xy - y^2 = 0$ and $x^2 - 2qxy - y^2 = 0$ coincide,

we have:

$$\frac{1}{1} = \frac{2/p}{-2q} = \frac{-1}{-1}$$

$$\frac{1}{1} = \frac{2/p}{-2q} = \frac{-1}{-1} \qquad \Rightarrow \qquad \frac{2}{p} = -2q$$

$$\Rightarrow pq = -1.$$

Illustration - 6 Prove that the angle between one of the lines given by $ax^2 + 2hxy + by^2 = 0$ and one of the lines $ax^2 + 2hxy + by^2 + \lambda (x^2 + y^2) = 0$ is equal to the angle between the other two lines of the system.

SOLUTION:

Let L_1L_2 be one pair and P_1P_2 be other, if the angle between L_1P_1 is equal to the angle between L_2P_2 , the pair of bisectors of L_1L_2 is same as that of P_1P_2 .

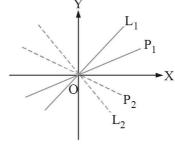
Pair of bisectors of P_1P_2 is:

$$\frac{x^2 - y^2}{(a+\lambda) - (b+\lambda)} = \frac{xy}{h} \qquad \Rightarrow \qquad \frac{x^2 - y^2}{a-b} = \frac{xy}{h}$$

$$\Rightarrow \frac{x^2 - y^2}{a - b} = \frac{xy}{h}$$

This is same as the bisector pair of L_1L_2 .

Hence the statement is proved.



Show that the orthocentre of the triangle formed by the lines $ax^2 + 2hxy + by^2 = 0$ and bx + byIllustration - 7

= 1 is given by
$$\frac{x}{l} = \frac{y}{m} = \frac{a+b}{am^2 - 2hlm + bl^2}$$
.

SOLUTION:

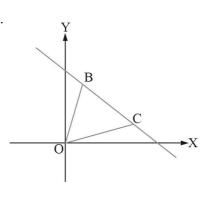
Let the triangle be *OBC* where *O* is origin and *BC* is the line lx + my = 1.

$$\Rightarrow$$
 OB, OC are $ax^2 + 2hxy + by^2 = 0$.

The altitude from O to BC is $y - 0 = \frac{m}{l}(x - 0) \implies mx - ly = 0$

Let $OB : y - m_1 x = 0$ and $OC : y - m_2 x = 0$.

$$\Rightarrow B \equiv \left[\frac{1}{l + mm_1}, \frac{m_1}{l + mm_1} \right]$$



Conic Section

Slope of altitude from B to OC is $-1/m_2$

 \Rightarrow The equation of altitude from B is

$$y - \frac{m_1}{l + mm_1} = \frac{-1}{m_2} \left[x - \frac{1}{l + mm_1} \right]$$

$$\Rightarrow (l + mm_1) x + m_2 (l + mm_1) y - (1 + m_1 m_2) = 0 \qquad ... (i)$$

$$\Rightarrow mx - ly + 0 = 0 \qquad \dots (ii)$$

Solving (i) and (ii), we get orthcentre:

$$\frac{x}{-l(1+mm_1)} = \frac{y}{-m(1+m_1m_2)} = \frac{1}{-l(l+mm_1) - mm_2(l+mm_1)}$$

$$\Rightarrow \frac{x}{l} = \frac{y}{m} = \frac{-(1+a/b)}{-l^2 - m^2 m_1 m_2 - lm(m_1 + m_2)}$$

$$\Rightarrow \frac{x}{l} = \frac{y}{m} = \frac{a+b}{bl^2 + am^2 - 2hlm}$$

[using values of $m_1 m_2$ and $m_1 + m_2$]