PREVIOUS YEARS' QUESTIONS

EXERCISE-II

- 1. The correct order of hybridisation of the central atom in the following species. NH_3 , $[PtCl_4]^{2-}$, PCl_5 and BCl_3 is [At No. Pt = 78]
 - (1) dsp^2 , sp^3d , sp^2 and sp^3
 - (2) sp^3, dsp^2, sp^3d, sp^2
 - (3) dsp^2, sp^2, sp^3 and sp^3d
 - (4) dsp^2 , sp^3 , sp^2 and sp^3d
- 2. In $[Cr(C_2O_4)_3]^{3-}$, the isomerism shown is -

[AIEEE-2002]

- (1) Ligand
- (2) Optical
- (3) Geometrical
- (4) Ionization
- 3. One mole of the complex compound Co(NH₃)₅Cl₃, gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of AgNO₃ solution to yield two moles of AgCl(s). The structure of the complex is -

[AIEEE-2003]

- $(1) [Co(NH_3)_3 Cl_3].2NH_3$
 - (2) [Co(NH₃)₄Cl₂]Cl.NH₃
- (3) $[Co(NH_2)_4Cl]Cl_2.NH_3$ (4) $[Co(NH_2)_5Cl]Cl_2$
- 4. In the coordination compound $K_a[Ni(CN)_a]$, the oxidation state of nickel is -[AIEEE-2003] (1) 0(2) + 1(3) + 2(4) -1
- The number of 3d-electrons remained in Fe²⁺ (At.no. 5. of Fe = 26) ion is – [AIEEE-2003]
 - (1) 4
- (2)5
- (3) 6(4) 3
- 6. The coordination number of a central metal atom in a complex is determined by :-[AIEEE-2004]
 - (1) The number of ligands around a metal ion bonded by sigma and pi-bonds both
 - (2) The number of ligands around a metal ion bonded by pi-bonds
 - (3) The number of ligands around a metal ion bonded by sigma bonds
 - (4) The number of only anionic ligands bonded to the metal ion
- 7. Which one of the following complexes is an outer orbital complex :-[AIEEE-2004]
 - (1) $[Co(NH_3)_6]^{3+}$
- (2) [Mn(CN)₆]⁴-
- $(3) [Fe(CN)_6]^{4-}$
- (4) $[Ni(NH_3)_6]^{2+}$
- (Atomic nos.:Mn=25; Fe=26; Co=27; Ni=28)
- 8. Coordination compounds have great importance in biological systems. In this contect which of the following statements is incorrect? [AIEEE-2004]
 - (1) Cyanocobalamin is vitamin B_{12} and contains cobalt
 - (2) Haemoglobin is the red pigment of blood and contains iron
 - (3) Chlorophylls are green pigments in plants and contain calcium
 - (4) Carboxypeptidase A is an enzyme and contains zinc

- 9. The correct order of magnetic moments (spin only values in B.M.) among is :-[AIEEE-2004]
 - (1) $[Fe(CN)_6]^{4-} > [MnCl_4]^{2-} > [CoCl_4]^{2-}$
 - (2) $[MnCl_4]^{2-} > [Fe(CN)_6]^{4-} > [CoCl_4]^{2-}$
 - (3) $[MnCl_4]^{2-} > [CoCl_4]^{2-} > [Fe(CN)_6]^{4-}$
 - (4) $[Fe(CN)_6]^{4-} > [CoCl_4]^{2-} > [MnCl_4]^{2-}$

(Atomic nos. : Mn = 25, Fe = 26, Co = 27)

10. The species having tetrahedral shape is:

[JEE 2004]

- (1) $[PdCl_4]^{2-}$
- (2) $[Ni(CN)_4]^{2-}$
- (3) $[Pd(CN)_{4}]^{2-}$
- (4) [NiCl₄]²⁻
- The pair of compounds having metals in their highest 11. oxidation state is [JEE 2004]
 - (1) MnO₂, FeCl₃
 - $(2) [MnO_4]^-, CrO_2Cl_2$
 - (3) [Fe(CN)₆]³⁻, [Co(CN)₃]
 - $(4)[NiCl_{4}]^{2-}$, $[CoCl_{4}]^{-}$
- 12. For octahedral complex, the value of the 'spin only' magnetic moment for one of the following configurations is 2.84 BM. The correct one is

[AIEEE-2005]

- (1) d⁴ (in strong ligand field)
- (2) d⁴ (in weak ligand field)
- (3) d³ (in weak as well as in strong field)
- (4) d⁵ (in strong ligand field)
- The IUPAC name for the complex $[Co(NO_2)(NH_3)_5]Cl_2$ 13. is -[AIEEE-2006]
 - (1) pentaammine nitrito-N- cobalt (II) chloride
 - (2) pentaammine nitrito-N- cobalt (III) chloride
 - (3) nitrito-N- pentaamminecobalt (III) chloride
 - (4) nitrito-N- pentaamminecobalt (II) chloride
- 14. Nickel (Z=28) combines with a uninegative monodentate ligand X- to form a paramagnetic complex $[NiX_4]^{2-}$. The number of unpaired electron in the nickel and geometry of this complex ion are, respectively. [AIEEE-2006]
 - (1) one, square planar (2) two, square planar
 - (3) one, tetrahedral (4) two, tetrahedral
- **15**. In Fe (CO)₅, the Fe–C bond possesses

[AIEEE-2006]

- (1) ionic character
- (2) σ character only
- (3) π –character only
- (4) both σ and π character
- 16. How many EDTA (ethylenediaminetetraacetate) molecules are required to make an octahedral complex with a Ca²⁺ ion? [AIEEE-2006]
 - (1) One (2) Two
- (3) Six
- (4) Three

CO-ORDINATION CHEMISTRY

The "spin-only" magnetic moment [in units of Bohr **17**. magneton, (μ_B)] of Ni²⁺ in aqueous solution would [AIEEE-2006] be (At. No. Ni= 28)-

(1) 0

- (2) 1.73
- (3) 2.84
- (4) 4.90
- Which one of the following has a square planar 18. geometry:-

(Co = 27, Ni = 28, Fe=26, Pt = 78)

[AIEEE-2007]

- (1) $[CoCl_4]^{2-}$
- (2) [FeCl₄]²⁻
- (3) [NiCl₄]2-
- (4) [PtCl₄]²⁻
- 19. The coordination number and the oxidation state of the element 'E' in the complex $[E(en)_{2}(C_{2}O_{4}^{-2})]NO_{2}^{\Theta}$ (where (en) is ethylene diamine) are, respectively -[AIEEE-2008]
 - (1) 6 and 2
- (2) 4 and 2
- (3) 4 and 3
- (4) 6 and 3
- 20. In which of the following octahedral complexes of Co (at. no. 27), will the magnitude of Δ_0 be the highest? [AIEEE-2008]
 - (1) [Co(CN)₆]³-
- $(2) [Co(C_2O_4)_2]^{3-}$
- (3) $[Co(H_2O)_6]^{3+}$
- $(4) [Co(NH_3)_6]^{3+}$
- Which of the following pairs represents linkage 21. isomers? [AIEEE-2009]
 - (1) $[Co(NH_3)_5NO_3]SO_4$ and $[Co(NH_3)_5SO_4]NO_3$
 - (2) $[PtCl_2(NH_3)_4]Br_2$ and $[PtBr_2(NH_3)_4]Cl_2$
 - (3) $[Cu(NH_3)_4][PtCl_4]$ and $[Pt(NH_3)_4][CuCl_4]$
 - (4) [Pd (PPh₃)₂(NCS)₂] and [Pd(PPh₃)₂ (SCN)₂]
- 22. Which of the following has an optical isomer? [AIEEE-2009]
 - (1) $[Co(H_2O)_4(en)]^{3+}$
 - $(2) [Co(en)_2(NH_3)_2]^{3+}$ $(4) [Co(en)(NH_3)_2]^{2+}$
 - $(3) [Co(NH_3)_3Cl]^+$ Which one of the following has an optical isomer?
- 23. [AIEEE-2010]
 - $(1) [Zn(en)_2]^{2+}$
- (2) $[Zn(en)(NH_3)_2]^{2+}$
- (3) $[Co(en)_3]^{3+}$
- $(4) [Co(H_2O)_4(en)]^{3+}$
- (en = ethylenediamine)
- A solution containing 2.675 g of CoCl₃.6NH₃ (molar 24. mass = 267.5 g mol^{-1}) is passed through a cation exchanger. The chloride ions obtained in solution were treated with excess of AgNO₃ to give $4.78 \, \text{g}$ of AgCl (molar mass = $143.5 \, \text{g}$ mol⁻¹). The formula of the complex is :-[AIEEE-2010] (At. mass of Ag = 108 u)
 - (1) [CoCl(NH₃)₅]Cl₂
- $(2) [Co(NH_3)_6]Cl_3$
- (3) [CoCl₂(NH₃)₄]Cl
- (4) [CoCl₃(NH₃)₃]

- **25**. Which of the following facts about the complex $[Cr(NH_3)_6]Cl_3$ is wrong? [AIEEE-2011]
 - (1) The complex is an outer orbital complex
 - (2) The complex gives white precipitate with silver nitrate solution
 - (3) The complex involves d²sp³ hybridisation and is octahedral in shape
 - (4) The complex is paramagnetic
- The magnetic moment (spin only) of $[NiCl_4]^{2-}$ is :-**26**. [AIEEE-2011]
 - (1) 2.82 BM
- (2) 1.41 BM
- (3) 1.82 BM
- (4) 5.46 BM
- Among the ligands NH₃,en, CN- and CO the correct 27. order of their increasing field strength, is :-[AIEEE-2011]
 - (1) $CO < NH_3 < en < CN$
 - (2) $NH_3 < en < CN < CO$
 - (3) $CN^{-} < NH_{3} < CO < en$
 - (4) en < CN $^-$ < NH $_3$ < CO
- 28. Which one of the following complex ions has geometrical isomers? [AIEEE-2011]
 - $(1) [Co (en)_3]^{3+}$
- (2) $[Ni (NH_3)_5Br]$ +
- (3) [Co $(NH_3)_2$ (en)₂]³⁺
- (4) $[Cr (NH_3)_4(en)]^{3+}$
- **29**. Which among the following will be named as dibromidobis (ethylene diamine) chromium (III) bromide? [AIEEE-2012]
 - (1) [Cr(en)Br₂]Br
- $(2) [Cr(en)_3]Br_3$
- (3) [Cr(en)₂Br₂]Br
- $(4) [Cr(en)Br_4]^-$
- 30. The complex ion

[Pt(NO₂) (Py) (NH₃) (NH₂OH)] + will give :-

[JEE-MAIN-2012, Online]

- (1) 4 isomers (Geometrical)
- (2) 2 isomers (Geometrical)
- (3) 3 isomers (Geometrical)
- (4) 6 isomers (Geometrical)

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	2	4	1	3	3	4	3	3	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	1	2	4	4	1	3	4	4	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	4	2	3	2	1	1	2	3	3	3