PREVIOUS YEARS' QUESTIONS

1. The energy of an electron in the first Bohr orbit of H atom is $-13.6 \, \text{eV}$. The possible energy value(s) of the excited state(s) for electrons in Bohr orbits of hydrogen is/are:

[JEE 1998]

- (1) 3.4 eV
- (2) 4.2 eV
- (3) 6.8 eV
- $(4) + 6.8 \, \text{eV}$
- 2. The number of nodal planes in a p_x orbital is:

[JEE 2000]

(1) one

- (2) two
- (3) three
- (4) zero
- 3. An atom has a mass of 0.02 kg and uncertainty in its velocity is 9.218×10^{-6} m/s then uncertainty in position is (h = $6.626 \times 10^{-34} \text{ Js}$) [AIEEE 2002]
 - (1) 2.86×10^{-28} m
- $(2) 2.86 \times 10^{-32} \text{cm}$
- (3) 1.5×10^{-27} m
- $(4) 3.9 \times 10^{-10} \text{ m}$
- 4. Energy of H- atom in the ground state is -13.6 eV, Hence energy in the second excited state is-

[AIEEE 2002]

- (1) 6.8 eV
- (2) -3.4 eV
- (3) -1.51 eV
- (4) 4.3 eV
- 5. Uncertainty in position of a particle of 25 g in space is 10⁻⁵ m. Hence uncertainty in velocity (ms⁻¹) is (Planck's constant h = 6.6×10^{-34} Js)

[AIEEE-2002]

- (1) 2.1×10^{-28}
- $(2) 2.1 \times 10^{-34}$
- (3) 0.5×10^{-34}
- $(4) 5.0 \times 20^{-24}$
- 6. The orbital angular momentum for an electron revolving in an orbit is given by $\sqrt{\ell(\ell+1)}$. $\frac{h}{2\pi}$. This momentum for an s-electron will be given by

[AIEEE-2003]

- $(1)\sqrt{2}.\frac{h}{2\pi}$
- $(2) + \frac{1}{2} \cdot \frac{h}{2\pi}$

(3) zero

- (4) $\frac{h}{2\pi}$
- 7. The number of d-electrons retained in Fe²⁺ (At. no. of Fe = 26) ion is : [AIEEE-2003]
 - (1)6
- (2)3
- (3) 4
- (4)5
- 8. The de Broglie wavelength of a tennis ball of mass 60 g moving with a velocity of 10 metres per second is approximately: [AIEEE 2003]
 - (1) 10^{-25} metres
- (2) 10⁻³³ metres
- (3) 10^{-31} metres
- (4) 10^{-16} metres

EXERCISE-II

- 9. Which of the following sets of quantum number is correct for an electron in 4f orbital? [AIEEE-2004]
 - (1) n = 3, l = 2, m = -2, s = +1/2
 - (2) n = 4, l = 4, m = -4, s = -1/2
 - (3) n = 4, l = 3, m = +1, s = +1/2
 - (4) n = 4, l = 3, m = +4, s = +1/2
- 10. Consider the ground state of Cr atom (Z = 24). The numbers of electrons with the azimuthal quantum numbers, l = 1 and 2 are, respectively [AIEEE-2004]
 - (1) 16 and 5
- (2) 12 and 5
- (3) 16 and 4
- (4) 12 and 4
- 11. The wavelength of the radiation emitted, when in a hydrogen atom electron falls from infinity to stationary state 1, would be [AIEEE-2004] (Rydberg constant = $1.097 \times 10^7 \,\mathrm{m}^{-1}$):
 - $(1) 9.1 \times 10^{-8} \,\mathrm{nm}$
- (2) 192 nm
- (3) 406 nm
- (4) 91 nm
- 12. Which one of the following sets of ions represents the collection of isoelectronic species?

[AIEEE-2004]

- (1) Na+, Mg²⁺, Al³⁺, Cl⁻
- (2) Na+, Ca²⁺, Sc³⁺, F
- (3) K+, Cl-, Mg²⁺, Sc³⁺
- (4) K⁺, Ca²⁺, Sc³⁺, Cl⁻
- 13. The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom? [JEE 2004]
 - (1) He^+ (n = 2)
- (2) Li^{2+} (n = 2)
- (3) Li^{2+} (n = 3)
- (4) Be^{3+} (n = 2)
- 14. In a multi-electron atom, which of the following orbitals described by the three quantum members will have the same energy in the absence of magnetic and electric fields? [AIEEE-2005]
 - (A) n = 1, l = 0, m = 0
 - (B) n = 2, l = 0, m = 0
 - (C) n = 2, l = 1, m = 1
 - (D) n = 3, l = 2, m = 1
 - (E) n = 3, l = 2, m = 0
 - (1) (D) and (E)
- (2) (C) and (D)
- (3) (B) and (C)
- (4) (A) and (B)
- 15. Of the following sets which one does not contain isoelectronic species? [AIEEE-2005]
 - (1) BO_3^{3-} , CO_3^{2-} , NO_3^{-} (2) SO_3^{2-} , CO_3^{2-} , NO_3^{-}
 - (3) CN^- , N_2 , C_2^{2-}
- (4) PO₄³⁻, SO₄²⁻, ClO₄⁻

- Which of the following statements in relation to the **16**. hydrogen atom is correct? [AIEEE-2005]
 - (1) 3s, 3p and 3d orbitals all have the same energy
 - (2) 3s and 3p orbitals are of lower energy than 3d orbitals
 - (3) 3p orbital is lower in energy than 3d orbital
 - (4) 3s orbitals is lower in energy than 3p orbital
- According to Bohr's theory angular momentum of 17. electron in 5th shell is:-[AIEEE-2006]
 - (1) 1.0 h/ π
- (2) $10 \text{ h/}\pi$
- (3) $2.5 \text{ h/}\pi$
- (4) 25 h/ π
- Uncertainty in the position of an electron 18. (mass = 9.1×10^{-31} Kg) moving with a velocity 300 ms⁻¹, accurate upto 0.001%, will be :- $(h = 6.63 \times 10^{-34} \text{ Js})$

[AIEEE-2006]

- $(1) 5.76 \times 10^{-2} \text{ m}$
- $(2) 1.92 \times 10^{-2} \text{ m}$
- (3) 3.84×10^{-2} m
- (4) 19.2×10^{-2} m
- Which of the following sets of quantum numbers **19**. represents the highest energy of an atom?

[AIEEE-2007]

- (1) n = 3, l = 1, m = 1, $s = +\frac{1}{2}$
- (2) n = 3, l = 2, m = 1, $s = +\frac{1}{2}$
- (3) n = 4, l = 0, m = 0, $s = +\frac{1}{2}$
- (4) n = 3, l = 0, m = 0, $s = +\frac{1}{2}$
- The ionziation enthalpy of hydrogen atom is 20. 1.312 x 10⁶ J mol⁻¹. The energy required to excite the electron in the atom from n = 1 to n = 2 is

[AIEEE-2008]

- (1) $8.51 \times 10^5 \text{ J mol}^{-1}$
- (2) $6.56 \times 10^5 \text{ J mol}^{-1}$
- (3) $7.56 \times 10^5 \text{ J mol}^{-1}$
- $(4) 9.84 \times 10^5 \text{ J mol}^{-1}$
- In an atom, an electron is moving with a speed of 21. 600 m/s with an accuracy of 0.005%. Certainity with which the position of the electron can be located is (h = 6.6×10^{-34} kg m² s⁻¹, mass of electron, $e_{\rm m} = 9.1 \times 10^{-31} \text{ kg}$:-[AIEEE-2009]

 - (1) 1.92×10^{-3} m
- (2) 3.84×10^{-3} m
- (3) 1.52×10^{-4} m
- (4) 5.10×10^{-3} m

- 22. Calculate the wavelength (in nanometer) associated with a proton moving at 1.0×10^3 ms⁻¹ (Mass of proton = 1.67×10^{-27} kg and h = 6.63×10^{-34} Js):-[AIEEE-2009]
 - (1) 2.5 nm
- (2) 14.0 nm
- (3) 0.032 nm
- (4) 0.40 nm
- Ionisation energy of He^+ is 19.6×10^{-18} J atom⁻¹. The **23**. energy of the first stationary state (n = 1) of Li^{2+} is:-

[AIEEE-2010]

- (1) $8.82 \times 10^{-17} \text{ J atom}^{-1}$
- (2) $4.41 \times 10^{-16} \text{ J atom}^{-1}$
- (3) $-4.41 \times 10^{-17} \text{ J atom}^{-1}$
- $(4) -2.2 \times 10^{-15} \text{ J atom}^{-1}$
- The frequency of light emitted for the transition 24. n = 4 to n = 2 of He⁺ is equal to the transition in H atom corresponding to which of the following

[AIEEE-2011]

- (1) n = 3 to n = 1
- (2) n = 2 to n = 1
- (3) n = 3 to n = 2
- (4) n = 4 to n = 3
- 25. The electrons identified by quantum numbers n and ℓ :-[AIEEE-2012]
 - (a) n = 4, $\ell = 1$
- (b) n = 4, $\ell = 0$
- (c) n = 3, $\ell = 2$
- (d) n = 3, $\ell = 1$

Can be placed in order of increasing energy as

- (1) (a) < (c) < (b) < (d)
- (2) (c) < (d) < (b) < (a)
- (3) (d) < (b) < (c) < (a)
- (4) (b) < (d) < (a) < (c)
- 26. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [a₀ is Bohr radius]

- (2) $\frac{h^2}{16\pi^2 ma_0^2}$ (4) $\frac{h^2}{32\pi^2 ma_0^2}$

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	1	1	1	3	1	3	1	2	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	4	1	2	1	3	2	2	4
Que.	21	22	23	24	25	26				
Ans.	1	4	3	2	3	3				