THREE DIMENSIONAL GEOMETRY PYQ

- 1. The distance of the point (1, -5, 9) from the plane x - y + z = 5 measured along a straight line x = y = z is: [AIEEE-2011]
 - (1) $3\sqrt{5}$

(2) $10\sqrt{3}$

(3) $5\sqrt{3}$

- $(4) \ 3\sqrt{10}$
- 2. An equation of a plane parallel to the plane x - 2y + 2z - 5 = 0 and at a unit distance from the origin is: [AIEEE-2012]
 - (1) x 2y + 2z + 5 = 0
 - (2) x 2v + 2z 3 = 0
 - (3) x 2y + 2z + 1 = 0
 - (4) x 2y + 2z 1 = 0
- If the lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ 3.
 - $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then k is equal to:

[AIEEE-2012]

- (1) 0

- (2) 1 $(3) \frac{2}{9}$ $(4) \frac{9}{2}$
- 4. The equation of a plane containing the line

$$\frac{x+1}{-3} = \frac{y-3}{2} = \frac{z+2}{1}$$
 and the point $(0, 7, -7)$ is:

[AIEEE-2012 (Online)]

- (1) x + 2y z = 21
- (2) x + y + z = 0
- (3) 3x 2v + 3z + 35 = 0
- (4) 3x + 2y + 5z + 21 = 0
- 5. Consider the following planes:

$$P: x + y - 2z + 7 = 0$$

$$Q: x + y + 2z + 2 = 0$$

$$R: 3x + 3y - 6z - 11 = 0$$
 [AIEEE-2012 (Online)]

- (1) P and R are perpendicular
- (2) P and Q are parallel
- (3) P and R are parallel
- (4) Q and R are perpendicular

The distance of the point $-\hat{i} + 2\hat{j} + 6\hat{k}$ from the 6. straight line that passes through the point $2\hat{i} + 3\hat{j} - 4\hat{k}$ and is parallel to the vector

 $6\hat{i} + 3\hat{j} - 4\hat{k}$ is :

[AIEEE-2012 (Online)]

(1) 8

(2)7

(3) 10

- (4)9
- 7. A line with positive direction cosines passes through the point P(2, -1, 2) and makes equal angles with the coordinate axes. If the line meets the plane 2x + y + z = 9 at point Q, then the length PQ equals

[AIEEE-2012 (Online)]

(1) 2

(2) $\sqrt{3}$

(3) 1

- $(4) \sqrt{2}$
- 8. The values of a for which the two points (1, a, 1) and (-3, 0, a) lie on the opposite sides of the plane 3x + 4y - 12z + 13 = 0, satisfy :-

[AIEEE-2012 (Online)]

- (1) 0 < a < 1/3
- (2) a = 0
- (3) -1 < a < 0
- (4) a < -1 or a > 1/3
- 9. If the three planes x = 5, 2x - 5ay + 3z - 2 = 0 and 3bx + y - 3z = 0 contain a common line, then (a, b) is equal to :-[AIEEE-2012 (Online)]
 - $(1) \left(-\frac{1}{5}, \frac{8}{15}\right)$
- (2) $\left(-\frac{8}{15}, \frac{1}{5}\right)$
- (3) $\left(\frac{1}{5}, -\frac{8}{15}\right)$
- (4) $\left(\frac{8}{15}, -\frac{1}{5}\right)$
- 10. The coordinates of the foot of perpendicular from

the point (1, 0, 0) to the line $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$

are :-

[AIEEE-2012 (Online)]

- (1) (5, -8, -4)
- (2) (2, -3, 8)
- (3) (3, -4, -2)
- (4) (1, -1, -10)

THREE DIMENSIONAL GEOMETRY

- **11.** Distance between two parallel planes 2x + y + 2z = 8 and 4x + 2y + 4z + 5 = 0 is : [JEE (Main)-2013]
 - (1) $\frac{3}{2}$

 $(2)\frac{5}{2}$

(3) $\frac{7}{2}$

- $(4) \frac{9}{2}$
- **12.** If the lines $\frac{x-2}{1} = \frac{y-3}{1} = \frac{z-4}{-k}$ and

 $\frac{x-1}{k} = \frac{y-4}{2} = \frac{z-5}{1}$ are coplanar, then k can

have :

[JEE (Main)-2013]

- (1) any value
- (2) exactly one value
- (3) exactly two values
- (4) exactly three values.
- 13. The image of the line

$$\frac{x-1}{3} = \frac{y-3}{1} = \frac{z-4}{-5}$$
 in the plane

2x - y + z + 3 = 0 is the line: [JEE (Main)-2014]

- $(1) \ \frac{x+3}{3} = \frac{y-5}{1} = \frac{z-2}{-5}$
- (2) $\frac{x+3}{-3} = \frac{y-5}{-1} = \frac{z+2}{5}$
- (3) $\frac{x-3}{3} = \frac{y+5}{1} = \frac{z-2}{-5}$
- (4) $\frac{x-3}{-3} = \frac{y+5}{-1} = \frac{z-2}{5}$
- **14.** The angle between the lines whose direction cosines satisfy the equations $\ell + m + n = 0$ and $\ell^2 = m^2 + n^2$ is : [JEE (Main)-2014]
 - $(1) \ \frac{\pi}{3}$

(2) $\frac{\pi}{4}$

(3) $\frac{\pi}{6}$

 $(4) \ \frac{\pi}{2}$

- **15.** The equation of the plane containing the line 2x 5y + z = 3; x + y + 4z = 5, and parallel to the plane, x + 3y + 6z = 1, is
 - (1) x + 3y + 6z = 7

[JEE (Main)-2015]

- (2) 2x + 6y + 12z = -13
- (3) 2x + 6y + 12z = 13
- (4) x + 3y + 6z = -7
- **16.** The distance of the point (1, 0, 2) from the point of intersection of the line $\frac{x-2}{3} = \frac{y+1}{4} = \frac{z-2}{12}$ and the plane x-y+z=16, is :

[JEE (Main)-2015]

- (1) $3\sqrt{21}$
- (2) 13
- (3) $2\sqrt{14}$
- (4) 8
- 17. The distance of the point (1, -5, 9) from the plane x y + z = 5 measured along the line x = y = z is : [JEE (Main)-2016]
 - (1) $\frac{20}{3}$

- (2) $3\sqrt{10}$
- (3) $10\sqrt{3}$
- (4) $\frac{10}{\sqrt{3}}$
- **18.** If the line, $\frac{x-3}{2} = \frac{y+2}{-1} = \frac{z+4}{3}$ lies in the plane, |x + my z| = 9, then $\ell^2 + m^2$ is equal to :-

[JEE (Main)-2016]

(1) 2

(2) 26

(3) 18

- (4) 5
- 19. If the image of the point P(1, -2, 3) in the plane, 2x + 3y 4z + 22 = 0 measured parallel to line,
 - $\frac{x}{1} = \frac{y}{4} = \frac{z}{5}$ is Q, then PQ is equal to :-

[JEE (Main)-2017]

- (1) $6\sqrt{5}$
- (2) $3\sqrt{5}$
- (3) $2\sqrt{42}$
- (4) $\sqrt{42}$

20. The distantce of the point (1, 3, -7) from the plane passing through the point (1, -1, -1), having normal

perpendicular to both the lines $\frac{x-1}{1} = \frac{y+2}{-2} = \frac{z-4}{2}$

and $\frac{x-2}{2} = \frac{y+1}{-1} = \frac{z+7}{-1}$, is :- [JEE (Main)-2017]

- (1) $\frac{10}{\sqrt{74}}$ (2) $\frac{20}{\sqrt{74}}$ (3) $\frac{10}{\sqrt{83}}$ (4) $\frac{5}{\sqrt{83}}$
- 21. The length of the projection of the line segment joining the points (5, -1, 4) and (4, -1, 3) on the plane, x + y + z = 7 is: [JEE (Main)-2018]
- (1) $\frac{2}{3}$ (2) $\frac{1}{3}$ (3) $\sqrt{\frac{2}{3}}$ (4) $\frac{2}{\sqrt{3}}$
- **22**. If L_1 is the line of intersection of the planes 2x - 2y + 3z - 2 = 0, x - y + z + 1 = 0 and L_2 is the line of intersection of the planes x + 2y - z - 3 = 0, 3x - y + 2z - 1 = 0, then the distance of the origin from the plane, containing the lines L_1 and L_2 is : [JEE (Main)-2018]

- (1) $\frac{1}{3\sqrt{2}}$ (2) $\frac{1}{2\sqrt{2}}$ (3) $\frac{1}{\sqrt{2}}$ (4) $\frac{1}{4\sqrt{2}}$
- 23. The point P is the intersection of the straight line joining the points Q(2,3,5) and R(1,-1,4) with the plane 5x - 4y - z = 1. If S is the foot of the perpendicular drawn from the point T(2,1,4) to QR, then the length of the line segment PS is -

[IIT-2012]

- (1) $\frac{1}{\sqrt{2}}$ (2) $\sqrt{2}$ (3) 2

- The equation of a plane passing through the line of 24. intersection of the planes x + 2y + 3z = 2 and

x-y+z=3 and at a distance $\frac{2}{\sqrt{3}}$ from the point

(3, 1, -1) is

[IIT-2012]

- (1) 5x 11y + z = 17 (2) $\sqrt{2}x + y = 3\sqrt{2} 1$
- (3) $x + y + z = \sqrt{3}$ (4) $x \sqrt{2}y = 1 \sqrt{2}$

*25. If the straight lines $\frac{x-1}{2} = \frac{y+1}{k} = \frac{z}{2}$ and

 $\frac{x+1}{5} = \frac{y+1}{2} = \frac{z}{k}$ are coplanar, then the plane(s)

containing these two lines is(are) [IIT-2012]

- (1) y + 2z = -1
- (2) y + z = -1
- (3) y z = -1
- (4) v 2z = -1
- 26. Perpendiculars are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{2} = \frac{z}{3}$ to the plane x + y + z = 3. The feet of perpendiculars lie on the line

[JEE-Advanced 2013]

- (1) $\frac{x}{5} = \frac{y-1}{8} = \frac{z-2}{-13}$
- (2) $\frac{x}{2} = \frac{y-1}{3} = \frac{z-2}{-5}$
- (3) $\frac{x}{4} = \frac{y-1}{3} = \frac{z-2}{-7}$
- (4) $\frac{x}{2} = \frac{y-1}{7} = \frac{z-2}{5}$
- ***27.** A line ℓ passing through the origin is perpendicular to the lines

 $\ell_1 : (3+t)\hat{i} + (-1+2t)\hat{j} + (4+2t)\hat{k}, -\infty < t < \infty$

$$\ell_2: (3+2s)\hat{i} + (3+2s)\hat{j} + (2+s)\hat{k}, -\infty < s < \infty$$

Then , the coordinate(s) of the point(s) on ℓ_2 at a distance of $\sqrt{17}$ from the point of intersection of ℓ and ℓ_1 is(are) -[JEE-Advanced 2013]

- (1) $\left(\frac{7}{3}, \frac{7}{3}, \frac{5}{3}\right)$
- (2) (-1,-1,0)
- (3) (1,1,1)
- (4) $\left(\frac{7}{9}, \frac{7}{9}, \frac{8}{9}\right)$

***28.** Two lines $L_1 : x = 5, \frac{y}{3-\alpha} = \frac{z}{-2}$ and

 $L_2: x = \alpha, \frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can

take value(s)

[JEE-Advanced 2013]

- (1) 1
- (2) 2
- (3) 3
- $(4) \ 4$

29. Consider the lines

$$L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}, L_2: \frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$$

and the planes $P_1:7x+y+2z=3$, $P_2:$

3x + 5y - 6z = 4. Let ax + by + cz = d be the equation of the plane passing through the point of intersection of lines L_1 and L_2 and perpendicular to planes P_1 and P_2 .

Match List-I with List-II and select the correct answer using the code given below the lists.

[JEE-Advanced 2013]

List-I			List-II		
P.	a =	1.	13		
Q.	b =	2.	-3		
R.	c =	3.	1		
S.	d =	4.	-2		

Codes:

	Р	Q	K	S
(1)	3	2	4	1
(2)	1	3	4	2
(3)	3	2	1	4
(4)	2	4	1	3

30. From a point $P(\lambda,\lambda,\lambda)$, perpendiculars PQ and PR are drawn respectively on the lines y=x, z=1 and y=-x, z=-1. If P is such that $\angle QPR$ is a right angle, then the possible value(s) of λ is(are)

[JEE(Advanced)-2014]

(1) $\sqrt{2}$ (2) 1 (3) -1 (4) $-\sqrt{2}$

* Marked Questions are multiple answer

PREVIOUS YEARS QUESTIONS			AN	SWER K	(E)Y	Exercise		Exercise-II		
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	2	4	2	3	2	2	4	3	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	3	3	1	1	1	2	3	1	3	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	1	1	1	2,3	4	2,4	1,4	1	3