Let $\vec{a} = \hat{j} - \hat{k}$ and $\vec{c} = \hat{i} - \hat{j} - \hat{k}$. Then the vector \vec{b} 1. satisfying $\vec{a} \times \vec{b} + \vec{c} = \vec{0}$ and $\vec{a} \cdot \vec{b} = 3$ is :

[AIEEE-2010]

- (1) $-\hat{i} + \hat{j} 2\hat{k}$
- (2) $2\hat{i} \hat{i} + 2\hat{k}$
- (3) $\hat{i} \hat{j} 2\hat{k}$
- (4) $\hat{i} + \hat{i} 2\hat{k}$
- If the vectors $\vec{a} = \hat{i} \hat{j} + 2\hat{k}$, $\vec{b} = 2\hat{i} + 4\hat{j} + \hat{k}$ and 2. $\vec{c} = \lambda \hat{i} + \hat{j} + \mu \hat{k}$ are mutually orthogonal, then $(\lambda, \mu) =$ [AIEEE-2010]
 - (1) (-3, 2)
- (2)(2, -3)
- (3) (-2, 3)
- (4)(3, -2)
- If $\vec{a} = \frac{1}{\sqrt{10}} (3\hat{i} + \hat{k})$ and $\vec{b} = \frac{1}{7} (2\hat{i} + 3\hat{j} 6\hat{k})$, then 3.

the value of $(2\vec{a} - \vec{b}) \cdot [(\vec{a} \times \vec{b}) \times (\vec{a} + 2\vec{b})]$ is :-

[AIEEE-2011]

(1)5

(2) 3

(3) - 5

- (4) 3
- The vectors \vec{a} and \vec{b} are not perpendicular and \vec{c} and \vec{d} are two vectors satisfying : $\vec{b} \times \vec{c} = \vec{b} \times \vec{d}$ and $\vec{a} \cdot \vec{d} = 0$. Then the vector \vec{d} is equal to :-

[AIEEE-2011]

- (1) $\vec{b} + \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$
- (2) $\vec{c} \left(\frac{\vec{a} \cdot \vec{c}}{\vec{c} \cdot \vec{b}}\right) \vec{b}$
- (3) $\vec{b} \left(\frac{\vec{b} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{c}$
- (4) $\vec{c} + \left(\frac{\vec{a} \cdot \vec{c}}{\vec{a} \cdot \vec{b}}\right) \vec{b}$

- If the vectors $p\hat{i} + \hat{j} + \hat{k}$, $\hat{i} + q\hat{j} + \hat{k}$ and $\hat{i} + \hat{j} + r\hat{k}$ $(p\neq q\neq r\neq 1)$ are coplanar, then the value of pqr - (p + q + r) is: [AIEEE-2011]
 - (1) -2

(2) 2

(3) 0

- (4) -1
- Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors which are pairwise non-collinear. If $\vec{a} + 3\vec{b}$ is collinear with \vec{c} and $\vec{b} + 2\vec{c}$ is colliner with \vec{a} , then $\vec{a} + 3\vec{b} + 6\vec{c}$ is

[AIEEE-2011]

- (1) $\vec{a} + \vec{c}$
- (2) \vec{a}

(3) \vec{c}

- $(4) \vec{0}$
- Let \hat{a} and \hat{b} be two unit vectors. If the vectors 7. $\vec{c} = \hat{a} + 2\hat{b}$ and $\vec{d} = 5\hat{a} - 4\hat{b}$ are perpendicular to each other, then the angle between \hat{a} and \hat{b} is : [AIEEE-2012]
- (1) $\frac{\pi}{4}$ (2) $\frac{\pi}{6}$ (3) $\frac{\pi}{2}$ (4) $\frac{\pi}{3}$
- Let ABCD be a parallelogram such that 8. $\overrightarrow{AB} = \overrightarrow{q}$, $\overrightarrow{AD} = \overrightarrow{p}$ and $\angle BAD$ be an acute angle. If \vec{r} is the vector that coincides with the altitude directed from the vertex B to the side AD, then \vec{r} is given by: [AIEEE-2012]

(1)
$$\vec{r} = -3\vec{q} + \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$$

(2)
$$\vec{r} = 3\vec{q} - \frac{3(\vec{p} \cdot \vec{q})}{(\vec{p} \cdot \vec{p})}\vec{p}$$

(3)
$$\vec{r} = -\vec{q} + \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$$

(4)
$$\vec{r} = \vec{q} - \left(\frac{\vec{p} \cdot \vec{q}}{\vec{p} \cdot \vec{p}}\right) \vec{p}$$

9. ABCD is a parallelogram. The position vectors of A and C are respectively, $3\hat{i}+3\hat{j}+5\hat{k}$ and $\hat{i} - 5\hat{j} - 5\hat{k}$. If M is the mid-point of the diagonal DB, then the magnitude of the projection of OM on \overrightarrow{OC} , where O is the origin is :-

[AIEEE-2012 (Online)]

(1)
$$\frac{7}{\sqrt{50}}$$

(1)
$$\frac{7}{\sqrt{50}}$$
 (2) $7\sqrt{50}$ (3) $\frac{7}{\sqrt{51}}$ (4) $7\sqrt{51}$

(3)
$$\frac{7}{\sqrt{51}}$$

(4)
$$7\sqrt{51}$$

10. If $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} - \hat{k}$ and

 $\vec{c} = \lambda \hat{i} + \hat{j} + (2\lambda - 1) \hat{k}$ are coplanar vectors, then λ is equal to :-[AIEEE-2012 (Online)]

(1) 1

(2) 2

(3) -1

- (4) 0
- If $\vec{a} + \vec{b} + \vec{c} = \vec{0}$, $|\vec{a}| = 3$, $|\vec{b}| = 5$ and $|\vec{c}| = 7$, then the 11. angle between \vec{a} and \vec{b} is :- [AIEEE-2012 (Online)]

- (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{2}$ (3) $\frac{\pi}{6}$ (4) $\frac{\pi}{4}$
- **12.** If $\vec{a} = \hat{i} 2\hat{j} + 3\hat{k}$, $\vec{b} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{c} = r\hat{i} + \hat{j} + (2r - 1)\hat{k}$ are three vectors such that \vec{c} is parallel to the plane of \vec{a} and \vec{b} , then r is equal to :-[AIEEE-2012 (Online)]
 - (1) 0

(2) 2

(3) -1

- (4) 1
- **13**. A unit vector which is perpendicular to the vector $2\vec{i} - \vec{j} + 2\vec{k}$ and is coplanar with the vectors $\vec{i} + \vec{j} - \vec{k}$ and $2\vec{i} + \vec{j} - \vec{k}$ is :-

[AIEEE-2012 (Online)]

(1)
$$\frac{3\vec{i} + 2\vec{j} - 2\vec{k}}{\sqrt{17}}$$

(2)
$$\frac{2\hat{j} + \hat{k}}{\sqrt{5}}$$

(3)
$$\frac{3\vec{i} + 2\vec{j} + 2\vec{k}}{\sqrt{17}}$$

(4)
$$\frac{2\vec{i} + 2\vec{j} - \vec{k}}{3}$$

If $\vec{u} = \hat{j} + 4\hat{k}$, $\vec{v} = \hat{i} - 3\hat{k}$, and $\vec{w} = \cos\theta \hat{i} + \sin\theta \hat{j}$ 14. are vectors in 3-dimensional space, then the maximum possible value of $|\vec{u} \times \vec{v}.\vec{w}|$ is :-

[AIEEE-2012 (Online)]

- (1) $\sqrt{14}$
- (2)5

(3) 7

- (4) $\sqrt{13}$
- **15**. if the vectors $\overrightarrow{AB} = 3\hat{i} + 4\hat{k}$ and

 $\overrightarrow{AC} = 5\hat{i} - 2\hat{j} + 4\hat{k}$ are the sides of a triangle ABC, then the length of the median through A is:

[JEE (Main)-2013]

- (1) $\sqrt{18}$
- $(2) \sqrt{72}$
- (3) $\sqrt{33}$
- $(4) \sqrt{45}$
- **16.** If $[\vec{a} \times \vec{b} \ \vec{b} \times \vec{c} \ \vec{c} \times \vec{a}] = \lambda [\vec{a} \ \vec{b} \ \vec{c}]^2$ then λ is equal to:

[JEE (Main)-2014]

(1) 2

(2) 3

(3) 0

- (4) 1
- 17. Let \overline{a} , \overline{b} and \overline{c} be non-zero vectors such that $(\overline{a} \times \overline{b}) \times \overline{c} = \frac{1}{3} | \overline{b} | | \overline{c} | \overline{a}$. If θ is the acute angle between the vectors \overline{b} and \overline{c} , then $\sin \theta$ equals-[JEE (Main)-2015]

- (1) $\frac{1}{3}$ (2) $\frac{\sqrt{2}}{3}$ (3) $\frac{2}{3}$ (4) $\frac{2\sqrt{2}}{3}$
- Let \vec{a}, \vec{b} and \vec{c} be three unit vectors such that $\overrightarrow{a} \times (\overrightarrow{b} \times \overrightarrow{c}) = \frac{\sqrt{3}}{2} (\overrightarrow{b} + \overrightarrow{c})$. If \overrightarrow{b} is not parallel to \vec{c} , then the angle between \vec{a} and \vec{b} is :-

[JEE (Main)-2016]

- (1) $\frac{5\pi}{6}$ (2) $\frac{3\pi}{4}$ (3) $\frac{\pi}{2}$ (4) $\frac{2\pi}{3}$

- **19.** Let $\vec{a} = 2\hat{i} + \hat{j} 2\hat{k}$ and $\vec{b} = \hat{i} + \hat{j}$. Let \vec{c} be a vector such that $|\vec{c} \vec{a}| = 3$, $|(\vec{a} \times \vec{b}) \times \vec{c}| = 3$ and the angle between \vec{c} and $\vec{a} \times \vec{b}$ be 30° . Then $\vec{a} \cdot \vec{c}$ is equal to : [JEE (Main)-2017]
 - (1) $\frac{1}{8}$

(2) $\frac{25}{8}$

(3) 2

- (4)5
- **20.** Let \vec{u} be a vector coplanar with the vectors $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{b} = \hat{j} + \hat{k}$. If \vec{u} is perpendicular to \vec{a} and $\vec{u}.\vec{b} = 24$, then $|\vec{u}|^2$ is equal to-

[JEE (Main)-2018]

- (1) 315
- (2) 256

(3)84

- (4) 336
- 21. Two adjacent sides of a parallelogram ABCD are given by $\overrightarrow{AB} = 2\hat{i} + 10\hat{j} + 11\hat{k}$ and $\overrightarrow{AD} = -\hat{i} + 2\hat{j} + 2\hat{k}$ The side AD is rotated by an acute angle α in the plane of the parallelogram so that AD becomes AD'. If AD' makes a right angle with the side AB, then the cosine of the angle α is given by -

[IIT-2010]

(1) $\frac{8}{9}$

(2) $\frac{\sqrt{17}}{9}$

(3) $\frac{1}{9}$

- (4) $\frac{4\sqrt{5}}{9}$
- **22.** Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} \hat{j} \hat{k}$ be three vectors. A vector \vec{v} in the plane of \vec{a} and \vec{b} , whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$, is given by
 - (1) $\hat{i} 3\hat{i} + 3\hat{k}$
- (2) $-3\hat{i} 3\hat{j} \hat{k}$
- (3) $3\hat{i} \hat{i} + 3\hat{k}$
- (4) $\hat{i} + 3\hat{j} 3\hat{k}$

- *23. The vector(s) which is/are coplanar with vectors $\hat{i} + \hat{j} + 2\hat{k}$ and $\hat{i} + 2\hat{j} + \hat{k}$, and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ is/are [IIT-2011]
 - $(1) \hat{j} \hat{k}$
- $(2) -\hat{\mathbf{i}} + \hat{\mathbf{j}}$
- (3) $\hat{\mathbf{i}} \hat{\mathbf{j}}$
- $(4) -\hat{\mathbf{j}} + \hat{\mathbf{k}}$
- **24.** Let $\vec{a} = -\hat{i} \hat{k}$, $\vec{b} = -\hat{i} + \hat{j}$ and $\vec{c} = \hat{i} + 2\hat{j} + 3\hat{k}$ be three given vectors. If \vec{r} is a vector such that $\vec{r} \times \vec{b} = \vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a} = 0$, then the value of $\vec{r} \cdot \vec{b}$ is
 - (1)8

(2)9

(3)6

- (4) None of these
- **25.** If \vec{a} and \vec{b} are vectors such that $|\vec{a} + \vec{b}| = \sqrt{29}$ and $\vec{a} \times (2\hat{i} + 3\hat{j} + 4\hat{k}) = (2\hat{i} + 3\hat{j} + 4\hat{k}) \times \vec{b}$, then a possible value of $(\vec{a} + \vec{b}).(-7\hat{i} + 2\hat{j} + 3\hat{k})$ is
 - (1) 0

(2) 3

(3)4

- (4) 8
- **26.** If \vec{a} , \vec{b} and \vec{c} are unit vectors satisfying $|\vec{a} \vec{b}|^2 + |\vec{b} \vec{c}|^2 + |\vec{c} \vec{a}|^2 = 9$, then

 $|2\vec{a} + 5\vec{b} + 5\vec{c}|$ is

[IIT-2012]

- **27.** Let $\overrightarrow{PR} = 3\hat{i} + \hat{j} 2\hat{k}$ and $\overrightarrow{SQ} = \hat{i} 3\hat{j} 4\hat{k}$ determine diagonals of a parallelogram PQRS and $\overrightarrow{PT} = \hat{i} + 2\hat{j} + 3\hat{k}$ be another vector. Then the volume of the parallelepiped determined by the vectors \overrightarrow{PT} , \overrightarrow{PQ} and \overrightarrow{PS} is [JEE-Advanced 2013]
 - (1) 5

(2) 20

(3) 10

(4) 30

VECTOR JEE MAIN

28. Match List-I with List-II and select the correct answer using the code given below the lists.

List-I

List-II

1. 100

P. Volume of parallelepiped determined by vectors \vec{a}, \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by

vectors $2\!\left(\vec{a}\!\times\!\vec{b}\right)\!, 3\!\left(\vec{b}\!\times\!\vec{c}\right)$ and

 $(\vec{c} \times \vec{a})$ is

Q. Volume of parallelepiped

2. 30

determined by vectors \vec{a} , \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by

vectors $3(\vec{a} + \vec{b}), (\vec{b} + \vec{c})$ and

 $2(\vec{c} + \vec{a})$ is

R Area of a triangle with adjacent sides determined by vectors

3. 24

 \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides

determined by vectors $(2\vec{a} + 3\vec{b})$

and $(\vec{a} - \vec{b})$ is S.

S Area of a parallelogram with adjacent sides determined by

4. 60

vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent sides determined by vectors

 $(\vec{a} + \vec{b})$ and \vec{a} is

[JEE-Advanced 2013]

Codes :								
P	Q	R	S					
4	2	3	1					
2	3	1	4					
3	4	1	2					
1	4	3	2					
	P 4 2	P Q 4 2 2 3 3 4	P Q R 4 2 3 2 3 1 3 4 1					

*29. Let \vec{x}, \vec{y} and \vec{z} be three vectors each of magnitude $\sqrt{2}$ and the angle between each pair of them is $\frac{\pi}{3}$. If \vec{a} is a nonzero vector perpendicular to \vec{x} and $\vec{y} \times \vec{z}$ and \vec{b} is nonzero vector perpendicular to \vec{y} and $\vec{z} \times \vec{x}$, then [JEE(Advanced)-2014]

- (1) $\vec{b} = (\vec{b} \cdot \vec{z})(\vec{z} \vec{x})$
- (2) $\vec{a} = (\vec{a} \cdot \vec{y})(\vec{y} \vec{z})$
- (3) $\vec{a} \cdot \vec{b} = -(\vec{a} \cdot \vec{y}) (\vec{b} \cdot \vec{z})$
- (4) $\vec{a} = (\vec{a} \cdot \vec{y})(\vec{z} \vec{y})$
- **30.** Let \vec{a}, \vec{b} , and \vec{c} be three non-coplanar unit vectors such that the angle between every pair of them

is $\frac{\pi}{3}$. If $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} = p\vec{a} + q\vec{b} + r\vec{c}$, where p,q and

r are scalars, then the value of $\frac{p^2+2q^2+r^2}{q^2}$ is

[JEE(Advanced)-2014]

* Marked Questions are multiple answer											
PREVIOUS YEARS QUESTIONS			ANSWER KEY		Exercise-II						
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	1	1	3	2	1	4	4	3	3	4	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	1	1	1	2	3	4	4	1	3	4	
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.	2	3	1,4	2	3	3	3	3	1,2,3	4	