POINT & STRAIGHT LINE PYQ

- 1. The centroid of a triangle is (2,3) and two of its vertices are (5,6) and (-1,4). The third vertex of the triangle is-[AIEEE-2002]
 - (1)(2,1)
- (2)(2,-1)

(3)(1,2)

- (4)(1,-2)
- The incentre of the triangle with vertices $(1,\sqrt{3})$, 2. (0,0) and (2,0) is-[AIEEE-2002]
 - $(1)\left[1,\frac{\sqrt{3}}{2}\right]$
- (2) $\left(\frac{2}{3}, \frac{1}{\sqrt{3}}\right)$
- $(3) \left(\frac{2}{3}, \frac{\sqrt{3}}{2} \right)$
- $(4) \left(1, \frac{1}{\sqrt{3}}\right)$
- 3. Locus of centroid of the triangle whose vertices are (a $\cos t$, a $\sin t$), (b $\sin t$, – b $\cos t$) and (1,0), where t is a parameter, is-[AIEEE 2003]
 - $(1) (3x + 1)^2 + (3y)^2 = a^2 b^2$
 - $(2) (3x 1)^2 + (3y)^2 = a^2 b^2$
 - (3) $(3x 1)^2 + (3y)^2 = a^2 + b^2$
 - $(4) (3x + 1)^2 + (3y)^2 = a^2 + b^2$
- Let A(2,-3) and B(-2,1) be vertices of a triangle 4. ABC. If the centroid of this triangle moves on the line 2x + 3y = 1, then the locus of the vertex C is the line-[AIEEE-2004, 2011]
 - (1) 2x + 3y = 9
- (2) 2x 3y = 7
- (3) 3x + 2y = 5
- (4) 3x 2y = 3
- **5**. Let P be the point (1,0) and Q a point on the curve $y^2 = 8x$. The locus of mid point of PQ is-

[AIEEE-2005]

- $(1) y^2 4x + 2 = 0 (2) y^2 + 4x + 2 = 0$
- $(3) x^2 + 4y + 2 = 0$
- $(4) x^2 4y + 2 = 0$
- 6. If a vertex of a triangle is (1,1) and the mid points of two sides through this vertex are (-1,2) and (3,2), then the centroid of the triangle is- [AIEEE - 2005]
 - $(1)\left(-1,\frac{7}{3}\right)$
- (2) $\left(\frac{-1}{3}, \frac{7}{3}\right)$
- (3) $\left(1, \frac{7}{3}\right)$

- 7. A straight line passing through the point A(3,4) is such that its intercept between the axes is bisected at A. Then its equation is-[AIEEE 2006]
 - (1) 3x 4y + 7 = 0
- (2) 4x + 3y = 24
- (3) 3x + 4y = 25 (4) x + y = 7
- Let P(-1,0) Q=(0,0) and $R(3,3\sqrt{3})$ be three points. The equation of the bisector of the angle PQR is-[AIEEE 2007], [IIT Scr. 2002]
 - (1) $\sqrt{3} x + y = 0$ (2) $x + \frac{\sqrt{3}}{2}y = 0$
- - (3) $\frac{\sqrt{3}}{2}x + y = 0$
- $(4) x + \sqrt{3} v = 0$
- 9. The perpendicular bisector of the line segment joining P(1, 4) and Q(k, 3) has y-intercept -4. Then a possible value of k is-[AIEEE-2008]

 - (1) 1 (2) 2
- (3) -2
- (4) -4
- The lines $p(p^2 + 1) x y + q = 0$ and 10. $(p^2 + 1)^2x + (p^2 + 1)y + 2q = 0$ are [AIEEE 2009] Perpendicular to a common line for:
 - (1) Exactly two values of p
 - (2) More than two values of p
 - (3) No value of p
 - (4) Exactly one value of p
 - The line L given by $\frac{x}{5} + \frac{y}{b} = 1$ passes through the point (13, 32). The line K is parallel to L and has the equation $\frac{x}{c} + \frac{y}{3} = 1$. Then the distance between L and K is: [AIEEE-2010]
- (1) $\frac{23}{\sqrt{15}}$ (2) $\sqrt{17}$ (3) $\frac{17}{\sqrt{15}}$ (4) $\frac{23}{\sqrt{17}}$
- A line is drawn through the point (1, 2) to meet the **12**. coordinate axes at P and Q such that it forms a triangle OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is: [AIEEE-2012]
 - $(1) -\frac{1}{2}$ $(2) -\frac{1}{4}$ (3) -4
- (4) -2

- If the point (1, a) lies in between the straight lines **13**. x + y = 1 and 2(x + y) = 3 then a lies in interval:-[AIEEE-2012 (Online)]
 - $(1)\left(1,\frac{3}{2}\right)$
- $(2) \left(0, \frac{1}{2}\right)$
- $(3) (-\infty, 0)$
- (4) $\left(\frac{3}{2},\infty\right)$
- If two vertices of a triangle are (5, -1) and (-2, 3)14. and its orthocentre is at (0, 0), then the third vertex is :-[AIEEE-2012 (Online)]
 - (1) (4, -7)
- (2) (-4, 7)
- (3)(-4, -7)
- (4)(4,7)
- 15. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1)(1, 1) and (1, 0) is: [JEE(Main)-2013]
 - (1) $2 + \sqrt{2}$
- (2) $2 \sqrt{2}$
- (3) $1+\sqrt{2}$
- (4) $1 \sqrt{2}$
- A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected ray is: [JEE(Main)-2013]
 - (1) $y = x + \sqrt{3}$
- (2) $\sqrt{3}v = x \sqrt{3}$
- (3) $y = \sqrt{3}x \sqrt{3}$ (4) $\sqrt{3}y = x 1$
- **17**. Let a, b, c and d be non-zero numbers. If the point of intersection of the lines 4ax + 2ay + c = 0 and 5bx + 2by + d = 0 lies in the fourth quadrant and is equidistant from the two axes then:

[JEE(Main)-2014]

- (1) 2bc 3ad = 0
- (2) 2bc + 3ad = 0
- (3) 3bc 2ad = 0
- (4) 3bc + 2ad = 0
- Let PS be the median of the triangle with vertices **18**. P(2, 2), Q(6, -1) and R(7, 3). The equation of the line passing through (1, -1) and parallel to PS is :

[JEE(Main)-2014]

- (1) 4x 7y 11 = 0
- (2) 2x + 9v + 7 = 0
- (3) 4x + 7y + 3 = 0
- (4) 2x 9y 11 = 0

19. Given three points P, Q, R with P(5, 3) and R lies on the x-axis. If equation of RQ is x - 2y = 2 and PQ is parallel to the x-axis, then the centroid of Δ PQR lies on the line:

[JEE (Main)-2014 (Online)]

- (1) x 2y + 1 = 0 (2) 5x 2y = 0
- (3) 2x + y 9 = 0 (4) 2x 5y = 0
- 20. Ihe base of an equilateral triangle is along the line given by 3x + 4y = 9. If a vertex of the triangle is (1, 2), then the length of a side of the triangle is:

[JEE (Main)-2014 (Online)]

- (1) $\frac{4\sqrt{3}}{15}$ (2) $\frac{4\sqrt{3}}{5}$ (3) $\frac{2\sqrt{3}}{15}$ (4) $\frac{2\sqrt{3}}{5}$
- If the three distinct lines 21.

x + 2ay + a = 0, x + 3by + b = 0 and

x + 4ay + a = 0 are concurrent, then the point (a, b) lies on a :-

[JEE (Main)-2014 (Online)]

- (1) circle
- (2) straight line
- (3) parabola
- (4) hyperbola
- 22. The circumcentre of a triangle lies at the origin and its centroid is the mid point of the line segment joining the points $(a^2 + 1, a^2 + 1)$ and (2a, -2a), $a \neq 0$. Then for any a, the orthocentre of this triangle lies on the line: [JEE (Main)-2014 (Online)]
 - (1) $y (a^2 + 1) x = 0$
 - (2) y + x = 0
 - (3) $(a 1)^2x (a + 1)^2y = 0$
 - (4) y 2ax = 0
- 23. If a line L is perpendicular to the line 5x - y = 1, and the area of the triangle formed by the line L and the coordinate axes is 5, then the distance of line L from the line x + 5y = 0 is :-

[JEE (Main)-2014 (Online)]

- (1) $\frac{7}{\sqrt{5}}$
- (2) $\frac{5}{\sqrt{13}}$
- (3) $\frac{7}{\sqrt{13}}$
- (4) $\frac{5}{\sqrt{7}}$

- **24.** Locus of the image of the point (2, 3) in the line (2x 3y + 4) + k(x 2y + 3) = 0, $k \in R$, is a
 - (1) circle of radius $\sqrt{2}$

[JEE(Main)-2015]

- (2) circle of radius $\sqrt{3}$
- (3) straight line parallel to x-axis
- (4) straight line parallel to y-axis
- **25.** Two sides of a rhombus are along the lines, x y + 1 = 0 and 7x y 5 = 0. If its diagonals intersect at (-1, -2), then which one of the following is a vertex of this rhombus? [JEE(Main)-2016]
 - $(1)\left(-\frac{10}{3}, -\frac{7}{3}\right)$
- (2) (-3, -9)
- (3) (-3, -8)
- (4) $\left(\frac{1}{3}, -\frac{8}{3}\right)$
- **26.** Let k be an integer such that triangle with vertices (k, -3k), (5, k) and (-k, 2) has area 28 sq. units. Then the orthocentre of this triangle is at the point:

[JEE(Main)-2017]

- $(1) \left(2, \frac{1}{2}\right)$
- (2) $\left(2, -\frac{1}{2}\right)$
- (3) $\left(1, \frac{3}{4}\right)$
- $(4)\left(1,-\frac{3}{4}\right)$
- **27.** If P(1,2), Q(4,6) R(5,7) and S(a,b) are the vertices of a parallelogram PQRS, then-
 - (1) a = b, b = 4
- (2) a = 3, b = 4
- (3) a = 2, b = 3
- (4) a = 3, b = 5

- **28.** Orthocentre of the triangle whose vertices are A(0,0), B(3,4) & C(4,0) is-
 - $(1)\left(3,\frac{3}{4}\right)$
- $(2) \left(3, \frac{5}{4}\right)$
- (3)(3,12)
- (4) (2,0)
- **29.** Let O(0,0), P(3,4), Q(6,0) be the vertices of the triangle OPQ. The point R inside the triangle OPQ is such that the triangles OPR, PQR, OQR are of equal area. The coordinates of R are-
 - $(1)\left(\frac{4}{3},3\right)$
- $(2)\left(3,\frac{2}{3}\right)$
- $(3)\left(3,\frac{4}{3}\right)$
- $(4)\left(\frac{4}{3},\frac{2}{3}\right)$
- **30.** A straight line L through the point (3, -2) is inclined at an angle 60° to the line $\sqrt{3}x + y = 1$. If L also intersect the x-axis, then the equation of L is
 - (1) $y + \sqrt{3}x + 2 3\sqrt{3} = 0$

[IIT-2011]

- (2) $y \sqrt{3}x + 2 + 3\sqrt{3} = 0$
- (3) $\sqrt{3}v x + 3 + 2\sqrt{3} = 0$
- $(4) \ \sqrt{3}y + x 3 + 2\sqrt{3} = 0$

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	4	3	1	1	3	2	1	4	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	2	3	2	2	3	2	4	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	2	3	2	1	4	1	3	1	3	2