MATHEMATICAL REASONING -PYQ

1. The statement $p \rightarrow (q \rightarrow p)$ is equivalent :-

[AIEEE-2008]

 $(1) p \rightarrow (p \rightarrow q)$

(2) $p \rightarrow (p \lor q)$

 $(3) p \rightarrow (p \land q)$

 $(4) p \rightarrow (p \leftrightarrow q)$

2. Let p be the statement "x is an irrational number", q be the statement "y is a trascendental number", and r be the statement "x is a rational number iff y is a transcendental number". [AIEEE-2008]

Statement -1: r is equivalent to either q or p.

Statement -2: r is equivalent to $\sim (p \leftrightarrow \sim q)$

- (1) Statement –1 is false, Statement –2 is true
- (2) Statement-1 is true. Statement-2 is false
- (3) Statement-1 is true. Statement-2 is true: Statement-2 is a correct explanation for Statement-1
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is not a correct explanation for Statement-1
- 3. **Statement-1**: $\sim (p \leftrightarrow \sim q)$ is equivalent to $p \leftrightarrow q$.

Statement-2: $\sim (p \leftrightarrow \sim q)$ is a tautology.

[AIEEE-2009]

- (1) Statement–1 is true, Statement–2 is false.
- (2) Statement-1 is false, Statement-2 is true.
- (3) Statement-1 is true, Statement-2 is true; Statement-2 is a correct explanation for Statement-1.
- (4) Statement-1 is true, Statement-2 is true; Statement–2 is not a correct explanation for statement-1.
- 4. Let S be a non-empty subset of R.

Consider the following statement:

- p: There is a rational number $x \in S$ such that x > 0which of the following statements is the negation of the statement p? [AIEEE-2010]
- (1) There is a rational number $x \in S$ such that $x \le 0$
- (2) There is no rational number $x \in S$ such that $x \le 0$
- (3) Every rational number $x \in S$ satisfies $x \le 0$
- (4) $x \in S$ and $x \le 0 \Rightarrow x$ is not rational

5. Consider the following statements:-

P: Suman is brilliant.

Q: Suman is rich.

R: Suman is honest.

The negation of the statement,

"Suman is brilliant and dishonest if and only if Suman is rich" can be equivalently expressed as:

[AIEEE-2011, Main 2015 (Online)]

 $(1) \sim Q \leftrightarrow \sim P \vee R \qquad (2) \sim Q \leftrightarrow \sim P \wedge R$

(3) $\sim Q \leftrightarrow P \land \sim R$

 $(4) \sim Q \leftrightarrow P \lor \sim R$

- The only statement among the followings that is a 6. tautology is: [AIEEE-2011]
 - (1) $q \rightarrow [p \land (p \rightarrow q)]$
 - $(2) p \wedge (p \vee q)$
 - $(3) p \vee (p \wedge q)$
 - (4) $[p \land (p \rightarrow q)] \rightarrow q$
- 7. The negation of the statement :-[AIEEE-2012] "If I become a teacher, then I will open a school",
 - (1) I will not become a teacher or I will open a school.
 - (2) I will become a teacher and I will not open a school.
 - (3) Either I will not become a teacher or I will not open a school.
 - (4) Neither I will become a teacher nor I will open a school.
- 8. Let p and g denote the following statements

p: the sun is shining

q: I shall play tennis in the afternoon.

The negation of the statement "If the sun is shining then I shall play tennis in the afternoon", is :

[AIEEE-2012 (Online)]

 $(1) \sim q \Rightarrow \sim p$

(2) $p \wedge \sim q$

(3) $q \wedge p$

(4) $q \Rightarrow \sim p$

MATHEMATICAL REASONING

- 9. The statement that is TRUE among the following [AIEEE-2012 (Online)]
 - (1) The contrapositive of $3x + 2 = 8 \Rightarrow x = 2$ is $x \neq 2 \Rightarrow 3x + 2 \neq 8$.
 - (2) $p \vee q$ and $p \wedge q$ have the same truth value
 - (3) The converse of $\tan x = 0 \Rightarrow x = 0$ is $x \neq 0 \Rightarrow \tan x = 0$
 - (4) $p \Rightarrow q$ is equivalent to $p \land \sim q$
- Let p and q be two statements. Amongst the **10**. following, the statement that is equivalent to $p \rightarrow q \text{ is } :$ [AIEEE-2012 (Online)]
 - (1) $p \wedge \sim q$
- $(2) \sim p \vee q$

 $(3) \sim p \wedge q$

- (4) p $\vee \sim q$
- 11. The logically equivalent proposition of $p \Leftrightarrow q$ is :-[AIEEE-2012 (Online)]
 - (1) $(p \land a) \Rightarrow (a \lor p)$
 - $(2) p \wedge q$
 - (3) $(p \land q) \lor (q \Rightarrow p)$
 - (4) $(p \Rightarrow q) \land (q \Rightarrow p)$
- 12. Consider:

Statement-I: $(p \land \neg q) \land (\neg p \land q)$ is a fallacy.

Statement-II: $(p \rightarrow q) \leftrightarrow (\sim q \rightarrow \sim p)$ is a tuatology. [JEE (Main)-2013]

- (1) Statement-I is true, Statement-II is true; statement II is a correct explanation for Statement-I.
- (2) Statement-I is true, Statement-II is true; statement-II is **not** a correct explanation for Statement-I.
- (3) Statement-I is true, Statement-II is false.
- (4) Statement-I is false, Statement-II is true.
- The statement \sim (p \leftrightarrow \sim q) is : [JEE (Main)-2014] **13**.
 - (1) equivalent to $p \leftrightarrow q$
 - (2) equivalent to $\sim p \leftrightarrow q$
 - (3) a tautology
 - (4) a fallacy

- 14. The proposition $\sim (pv \sim q)v \sim (p \vee q)$ is logically equivalent to :-[JEE(Main)-2014 (Online)]
 - $(1) \sim p$
- $(2) \sim q$
- (3) p
- (4) q
- 15. Let p, q, r denote arbitrary statements. Then the logically equivalent of the statement $p \Rightarrow (q \lor r)$ is:-

[JEE(Main)-2014 (Online)]

- (1) $(p \lor q) \Rightarrow r$
- (2) $(p \Rightarrow \sim q) \land (p \Rightarrow r)$
- (3) $(p \Rightarrow q) \land (p \Rightarrow \sim r)$
- (4) $(p \Rightarrow q) \lor (p \Rightarrow r)$
- 16. The contrapositive of the statement "If it is raining, then I will not come", is:

[JEE(Main)-2015 (Online)]

- (1) If I will not come, then it is raining.
- (2) If I will not come, then it is not raining.
- (3) If I will come, then it is not raining.
- (4) If I will come, then it is raining.
- The negation of $\sim s \vee (\sim r \wedge s)$ is equivalent 17. to: [JEE(Main)-2015]
 - (1) $s \vee (r \vee \sim s)$
- (2) $s \wedge r$
- (3) $s \wedge \sim r$
- (4) $s \wedge (r \wedge \sim s)$
- The Boolean Expression $(p \land \neg q) \lor q \lor (\neg p \land q)$ is 18. equivalent to :-[JEE(Main)-2016]
 - (1) $p \lor \sim q$ (2) $\sim p \land q$
- (3) p/q
- (4) p∨q
- 19. Consider the following two statements:
 - P: If 7 is an odd number, then 7 is divisible by 2.
 - Q: If 7 is a prime number, then 7 is an odd number If V_1 is the truth value of the contrapositive of P and V_2 is the truth value of contrapositive of Q, then the ordered pair (V₁, V₂) equals :

[JEE(Main)-2016 (Online)]

- (1) (F, F)
- (2)(T, T)
- (3) (F, T)
- (4) (T, F)

20. The contrapositive of the following statement,

"If the side of a square doubles, then its area increases four times", is: [JEE(Main)-2016 (Online)]

- (1) If the side of a square is not doubled, then its area does not increase four times.
- (2) If the area of a square does not increase four times, then its side is not doubled.
- (3) If the area of a square increases four times, then its side is not doubled.
- (4) If the area of a square increases four times, then its side is doubled.
- **21.** The Boolean expression \sim (p \vee q) \vee (\sim p \wedge q) is equivalent to : [JEE(Main)-2018]
 - (1) p
- (2) q
- $(3) \sim q$
- (4) ~p

22. If $p \rightarrow (\sim p \lor \sim q)$ is false, then the truth values of p and q are respectively:

[JEE(Main)-2018 (Online)]

- (1) F, F
- (2) F, T
- (3) T, T
- (4) T, F
- **23.** If $(P \land \neg q) \land (p \land r) \rightarrow \neg p \lor q$ is false, then the truth values of p,q and r are respectively

[JEE(Main)-2018 (Online)]

- (1) T,T,T
- (2) F, F, F
- (3) T, F, T
- (4) F, T, F

Previous Years Questions				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	2	1	3	3	4	2	2	1	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	4	2	1	1	4	3	2	4	3	2
Que.	21	22	23			2	7.			
Ans.	4	3	3							