SOLUTION OF TRIANGLE- PYQ

1. In a triangle ABC,

a $\cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$, then the sides

a,b and c

[JEE(Main)-2003]

- (1) satisfy a + b = c
- (2) are in A.P.
- (3) are in G.P.
- (4) are in H.P.
- 2. The sides of a triangle are $\sin \alpha$, $\cos \alpha$ and

 $\sqrt{1+\sin\alpha\cos\alpha}$ for some $0<\alpha<\frac{\pi}{2}$. Then the

greatest angle of the triangle is [JEE(Main)-2004]

 $(1) 60^{\circ}$

- $(2) 90^{\circ}$
- $(3) 120^{\circ}$
- (4) 150°
- In a triangle ABC, let $\angle C = \frac{\pi}{2}$. If r is the in-radius 3. and R is the circumradius of the triangle ABC, then 2(r+R) equals -[JEE(Main)-2005]
 - (1) b + c
- (2) a + b
- (3) a + b + c
- (4) c + a
- 4. ABCD is a trapezium such that AB and CD are parallel and BC \perp CD. If \angle ADB = θ , BC = p and CD = q, then AB is equal to - [JEE - Main 2013]
 - $(1) \frac{p^2 + q^2}{p^2 \cos \theta + q^2 \sin \theta}$
 - (2) $\frac{(p^2 + q^2)\sin\theta}{(p\cos\theta + q\sin\theta)^2}$
 - (3) $\frac{(p^2 + q^2)\sin\theta}{p\cos\theta + q\sin\theta}$
 - (4) $\frac{p^2 + q^2 \cos \theta}{p \cos \theta + a \sin \theta}$
- In a $\triangle ABC$, $\frac{a}{b} = 2 + \sqrt{3}$ and $\angle C = 60^{\circ}$. Then the 5. ordered pair ($\angle A$, $\angle B$) is equal to :[JEE(Main)-2015]
 - (1) (75°, 45°)
- (2) (45°, 75°)
- (3) (15°, 105°)
- (4) (105°, 15°)

6. If angle of triangle are in ratio 4:1:1, then ratio of the longest side to the perimeter is

[JEE(Adv.)-2003]

- (1) $\sqrt{3}:2+\sqrt{3}$
- (2) $1:\sqrt{3}$
- (3) $1:2+\sqrt{3}$
- (4) 2 : 3
- 7. If a, b, c are sides of triangle such that

a: b: c = 1: $\sqrt{3}$: 2, then A: B: C is equal to [JEE(Adv.)-2004]

- $(1) \ 3 : 2 : 1$
- $(2) \ 3 : 1 : 2$
- (3) 1 : 2 : 3
- (4) 1 : 3 : 2
- 8. In isosceles triangle whose are angle is 120° and radius of incircle is $\sqrt{3}$, then area of triangle is [JEE(Adv.)-2006]
 - (1) $7 + 12\sqrt{3}$
- (2) $12 7\sqrt{3}$
- (3) $12 + 7\sqrt{3}$
- $(4) 4\pi$
- 9. Two parellel chords of a circle of radius 2 are at distance $\sqrt{3} + 1$ apart. It the chord subtend angle $\frac{\pi}{L}$ and $\frac{2\pi}{L}$ at centre, where k > 0, then [k] =

[JEE(Adv.)-2010]

- (1) 3
- (2) 4
- (3) 5
- (4) 6
- In $\triangle ABC$, a = 6, b = 10 and area of triangle is 10. $15\sqrt{3}$. If $\angle ACB$ is obtuse and r is inradius then $r^2 =$ [JEE(Adv.)-2010]
 - (1) 4
- (2) 5
- (3) 6
- (4) 3
- 11. In a triangle the sum of two sides is x and the product of the same two sides is y. If $x^2 - c^2 = y$, where c is a third side of the triangle, then the ratio of the in-radius to the circum-radius of the triangle is -[JEE(Adv.)-2014]
 - (1) $\frac{3y}{2x(x+c)}$
- (2) $\frac{3y}{2c(x+c)}$
- (3) $\frac{3y}{4x(x+c)}$
- (4) $\frac{3y}{4c(y+c)}$

PREVIOUS YEARS QUESTIONS				ANSWER KEY			EXERCISE-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	3	2	3	4	1	3	3	1	4
Que.	11									
Ans.	2									