DIFFERENTIAL EQUATION- PYQ

- 1. The differential equation whose solution is $Ax^2 + By^2 = 1$, where A and B are arbitrary constants is of-[AIEEE-2006]
 - (1) first order and second degree
 - (2) first order and first degree
 - (3) second order and first degree
 - (4) second order and second degree
- 2. The differential equation of all circles passing through the origin and having their centres on the [AIEEE-2007]

 - (1) $x^2 = y^2 + xy \frac{dy}{dx}$ (2) $x^2 + y^2 + 3xy \frac{dy}{dx} = 0$
 - (3) $y^2 + x^2 + 2xy \frac{dy}{dx} = 0$ (4) $y^2 = x^2 + 2xy \frac{dy}{dx}$
- The solution of the differential equation $\frac{dy}{dx} = \frac{x+y}{x}$ 3. satisfying the condition y(1) = 1 is- [AIEEE-2008]
 - $(1) y = \ell nx + x$
- (2) $y = x \ln x + x^2$ (4) $y = x \ln x + x$
- (3) $y = xe^{(x-1)}$
- 4. The differential equation of the family of circles with fixed radius 5 units and centre on the line y = 2 is-[AIEEE-2008]
 - (1) $(x-2)y'^2 = 25 (y-2)^2$
 - (2) $(y-2)y'^2 = 25 (y-2)^2$
 - (3) $(y-2)^2y^2 = 25 (y-2)^2$
 - (4) $(x-2)^2y^2 = 25 (y-2)^2$
- 5. The differential equation which represents the family of curves $y = c_1 e^{c_2 x}$, where c_1 and c_2 are arbitrary [AIEEE-2009]
 (2) yy" = (y')²
 (4) y" = y'y constants, is :-
 - (1) yy'' = y'

(3) $y' = y^2$

- Solution of the differential equation 6.

 $\cos x \, dy = y(\sin x - y)dx$, $0 < x < \frac{\pi}{2}$ is:

[AIEEE-2010]

- (1) $\sec x = (\tan x + c) y$
- (2) $y \sec x = \tan x + c$
- (3) $y \tan x = \sec x + c$
- (4) $\tan x = (\sec x + c) y$
- **7**. Consider the differential equation [AIEEE-2011]

$$y^2 dx + \left(x - \frac{1}{y}\right) dy = 0$$
. It $y(1) = 1$,

then x is given by:

- (1) $1 \frac{1}{y} + \frac{e^{y}}{2}$
- (2) $4 \frac{2}{y} \frac{1}{e^y}$
- (3) $3 \frac{1}{y} + \frac{e^y}{e^y}$
- (4) $1 + \frac{1}{y} \frac{\frac{1}{e^y}}{\frac{1}{e^y}}$

8. Let I be the purchase value of an equipment and V(t) be the value after it has been used for t years. The value V(t) depreciates at a rate given by

differential equation $\frac{dV(t)}{dt} = -k(T - t)$, where

k > 0 is a constant and T is the total life in years of the equipment. Then the scrap value V(T) of the equipment is :-[AIEEE-2011]

- (1) I $\frac{k(T-t)^2}{2}$
- (3) $T^2 \frac{1}{1}$
- (4) I $-\frac{kT^2}{2}$
- 9. The population p(t) at time t of a certain mouse species satisfies the differential equation

$$\frac{dp(t)}{dt}$$
 = 0.5 p(t) - 450. If p(0) = 850, then the time

at which the population becomes zero is:

[AIEEE-2012]

 $(1) \ln 18$

 $(2) 2 \ln 18$

(3) ln9

- $(4) \frac{1}{2} \ln 18$
- 10. At present a firm is manufacturing 2000 items. It is estimated that the rate of change of production P w.r.t. additional number of workers x is given by

 $\frac{dP}{dx} = 100 - 12\sqrt{x}$. If the firm employs 25 more workers, then the new level of production of items [JEE(Main)-2013]

(1) 2500

(2) 3000

(3) 3500

- (4) 4500
- 11. Let the population of rabbits surviving at a time t be governed by the differential equation

$$\frac{dp(t)}{dt} = \frac{1}{2}p(t) - 200$$
. If p(0) = 100, then p(t) equals:

[JEE(Main)-2014]

- (1) $400 300 e^{t/2}$
- (2) $300 200 e^{-t/2}$
- (3) $600 500 e^{t/2}$
- $(4) 400 300 e^{-t/2}$
- Let y(x) be the solution of the differential equation

$$(x \log x) \frac{dy}{dx} + y = 2x \log x, (x \ge 1).$$

Then y(e) is equal to:

[JEE (Main) 2015]

(1) 2

(2) 2e

(3) e

(4) 0

DIFFERENTIAL EQUATION

13. If a curve y = f(x) passes through the point (1, -1) and satisfies the differential equation, y(1 + xy)

dx = x dy, then $f\left(-\frac{1}{2}\right)$ is equal to :

[JEE(Main)-2016]

(1)
$$\frac{4}{5}$$

(2)
$$-\frac{2}{5}$$

(1)
$$\frac{4}{5}$$
 (2) $-\frac{2}{5}$ (3) $-\frac{4}{5}$ (4) $\frac{2}{5}$

(4)
$$\frac{2}{5}$$

14. If $(2+\sin x)\frac{dy}{dx}+(y+1)\cos x=0$ and y(0)=1, then

 $y\left(\frac{\pi}{2}\right)$ is equal to :-

[JEE(Main)-2017]

(1)
$$\frac{4}{3}$$

(2)
$$\frac{1}{3}$$

(1)
$$\frac{4}{3}$$
 (2) $\frac{1}{3}$ (3) $-\frac{2}{3}$ (4) $-\frac{1}{3}$

$$(4) -\frac{1}{3}$$

Let y = y(x) be the solution of the differential equation $\sin x \frac{dy}{dx} + y \cos x = 4x, x \in (0, \pi)$. If

 $y\left(\frac{\pi}{2}\right) = 0$, then $y\left(\frac{\pi}{6}\right)$ is equal to :

[JEE(Main)-2018]

(1)
$$\frac{-8}{9\sqrt{3}}\pi^2$$

(2)
$$-\frac{8}{9}\pi^2$$

(3)
$$-\frac{4}{9}\pi^2$$

(4)
$$\frac{4}{9\sqrt{3}}\pi^2$$

- The differential equation $\frac{dy}{dx} = \frac{\sqrt{1-y^2}}{y}$ determines 16. a family of circles with-[IIT-2007]
 - (1) variable radii and a fixed centre at (0, 1)
 - (2) variable radii and a fixed centre at (0, -1)
 - (3) fixed radius 1 and variable centres along the
 - (4) fixed radius 1 and variable centres along the y-axis
- Let f be a real-valued differentiable function on R **17**. (the set of all real numbers) such that f(1) = 1. If the y-intercept of the tangent at any point P(x,y) on the curve y = f(x) is equal to the cube of the abscissa of P, then the value of f(-3) is equal to :- [IIT-2010] (1) -3(2) 3

(3)9

- (4) 9
- Let $f:[1,\infty)\to[2,\infty)$ be a differentiable function 18.

such that f(1) = 2. If $6 \int_{0}^{2} f(t) dt = 3x f(x) - x^3$

for all $x \ge 1$, then the value of f(2) is

[IIT 2011]

- *19. If y(x) satisfies the differential equation $y' - y \tan x = 2x \sec x \text{ and } y(0) = 0, \text{ then [IIT-2012]}$
 - (1) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{9\sqrt{2}}$
 - (2) $y'\left(\frac{\pi}{4}\right) = \frac{\pi^2}{18}$
 - (3) $y\left(\frac{\pi}{4}\right) = \frac{\pi^2}{9}$
 - (4) $y'\left(\frac{\pi}{3}\right) = \frac{4\pi}{3} + \frac{2\pi^2}{3\sqrt{3}}$
- A curve passes through the point $\left(1, \frac{\pi}{6}\right)$. Let the 20. slope of the curve at each point (x, y) be $\frac{y}{x} + \sec\left(\frac{y}{x}\right)$, x > 0. Then the equation of the curve [JEE(Adv.)-2013]
 - (1) $\sin\left(\frac{y}{y}\right) = \log x + \frac{1}{2}$
 - (2) $\csc\left(\frac{y}{x}\right) = \log x + 2$
 - (3) $\sec\left(\frac{2y}{x}\right) = \log x + 2$
 - (4) $\cos\left(\frac{2y}{x}\right) = \log x + \frac{1}{2}$
- **21.** Let $f: \left| \frac{1}{2}, 1 \right| \to \mathbb{R}$ (the set of all real numbers) be a positive, non-constant and differentiable

function such that f(x) < 2f(x) and $f\left(\frac{1}{2}\right) = 1$. Then

the value of $\int_{0}^{x} f(x)dx$ lies in the interval

[JEE(Advanced) 2013]

- (1) (2e 1, 2e)
- (2) (e-1, 2e-1)
- (3) $\left(\frac{e-1}{2}, e-1\right)$
- (4) $\left(0,\frac{e-1}{2}\right)$

22. The function y = f(x) is the solution of the differential equation

$$\frac{dy}{dx} + \frac{xy}{x^2 - 1} = \frac{x^4 + 2x}{\sqrt{1 - x^2}}$$
 in (-1,1) satisfying $f(0) = 0$.

Then
$$\int_{-\frac{\sqrt{3}}{2}}^{\frac{\sqrt{3}}{2}} f(x) dx$$
 is [JEE(Advanced)-2014]

(1)
$$\frac{\pi}{3} - \frac{\sqrt{3}}{2}$$

(2)
$$\frac{\pi}{3} - \frac{\sqrt{3}}{4}$$

(3)
$$\frac{\pi}{6} - \frac{\sqrt{3}}{4}$$

(4)
$$\frac{\pi}{6} - \frac{\sqrt{3}}{2}$$

*23. If $f: \mathbb{R} \to \mathbb{R}$ is a differentiable function such that f(x) > 2f(x) for all $x \in \mathbb{R}$, and f(0) = 1, then [JEE(Advanced)-2017]

(1)
$$f(x) > e^{2x}$$
 in $(0,\infty)$

- (2) f(x) is decreasing in $(0,\infty)$
- (3) f(x) is increasing in $(0,\infty)$
- (4) $f(x) < e^{2x}$ in $(0,\infty)$

***24.** Let $f:(0,\pi) \to \mathbb{R}$ be a twice differentiable function such that

$$\lim_{t \to x} \frac{f(x)\sin t - f(t)\sin x}{t - x} = \sin^2 x \text{ for all } x \in (0, \pi).$$

If $f\left(\frac{\pi}{6}\right) = -\frac{\pi}{12}$, then which of the following statement(s) is (are) TRUE ?

[JEE(Advanced)-2018]

$$(1) f\left(\frac{\pi}{4}\right) = \frac{\pi}{4\sqrt{2}}$$

(2)
$$f(x) < \frac{x^4}{6} - x^2$$
 for all $x \in (0, \pi)$

(3) There exists $\alpha \in (0, \pi)$ such that $f(\alpha) = 0$

$$(4) f''\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = 0$$

25. Let $f: \mathbb{R} \to \mathbb{R}$ be a differentiable function with f(0) = 0. If y = f(x) satisfies the differential equation

$$\frac{dy}{dx} = (2+5y)(5y-2), \text{ then the value of}$$

$$\lim_{x \to -\infty} f(x)$$
 is _____ . [JEE(Advanced)-2018]

* Marked Questions are multiple answer										
PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	4	4	3	2	1	4	4	2	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	1	1	2	2	3	3	Bonus	1,4	1
Que.	21	22	23	24	25					
Ans.	4	2	1,3	2,3,4	0.4					