IE CURVE- PYQ

10.

	AREA UNDER T									
1.		The area enclosed between the curves $y^2 = x$ and $y = x $ is- [AIEEE-2007]								
	(1) $\frac{2}{3}$	(2) 1	(3) $\frac{1}{6}$	(4) $\frac{1}{3}$						
2.	The area of the plane region bounded by the curves $x + 2y^2 = 0$ and $x + 3y^2 = 1$ is equal to- [AIEEE-2008]									
	(1) $\frac{5}{3}$	(2) $\frac{1}{3}$	(3) $\frac{2}{3}$	(4) $\frac{4}{3}$	9					
3.	$(y-2)^2 =$ point (2,	of the region $x - 1$, the tan 3) and the $x - (2)$	gent to the p –axis is :-	parabola at th	ne					
4.	$y = \sin x$	(2) 12 bounded by x between t		$y = \cos x \text{ ar}$						
	$x = \frac{3\pi}{2}$	is :-		[AIEEE-2010]						
	(1) $4\sqrt{2}$	- 2	(2) $4\sqrt{2}$	+ 2						
5.	(3) $4\sqrt{2}$ The area	- 1 of the region	(4) $4\sqrt{2}$ on enclosed		es					
	y = x, x =	$= e, y = \frac{1}{x} a$	and th <mark>e posi</mark>	tive x-axis is:	-					
	2		~	[AIEEE-201	1]					
	(1) $\frac{3}{2}$ squ	uare units	(2) $\frac{3}{2}$ so	uare units						
	(3) $\frac{1}{2}$ squ	uare units	(4) 1 squ	are units						
6.	The area is :	bounded by th	ie curves y ² =	= 4x and x ² =4 [AIEE <mark>E-201</mark>						
	(1) 0	(2) $\frac{32}{3}$	(3) $\frac{16}{3}$	(4) $\frac{8}{3}$						

The area bounded between the parabolas $x^2 = \frac{y}{x^2}$

(1) $10\sqrt{2}$ (2) $20\sqrt{2}$ (3) $\frac{10\sqrt{2}}{2}$ (4) $\frac{20\sqrt{2}}{2}$

The area (in square units) bounded by the curves

 $y = \sqrt{x}$, 2y - x + 3 = 0, x-axis and lying in the

The area bounded by the curve y = ln(x) and the lines y = 0, $y = \ln(3)$ and x = 0 is equal to :

(3) 18

(2) 3

[AIEEE-2012]

[JEE(Main)-2013]

[JEE-Main (On line)-2013]

 $(4) \ 3 \ ln \ (3) + 2$

and $x^2 = 9y$, and the straight line y = 2 is:

7.

8.

9.

first quadrant is:

 $(1) \ 3 \ ln \ (3) - 2$

(2)36

(1)9

(3)2

[JEE-Main (On line)-2013] (1) 7/9(2) 14/3(3) 14/9(4) 7/311. The area under the curve $y = |\cos x - \sin x|$, $0 \leq x \leq \frac{\pi}{2}$, and above x-axis is : [JEE-Main (On line)-2013] (1) $2\sqrt{2}$ (2) $2\sqrt{2} + 2$ (4) $2\sqrt{2} - 2$ (3) 0**12**. The area of the region described by A = { $(x, y) : x^2 + y^2 \le 1$ and $y^2 \le 1 - x$ } is : [JEE(Main)-2014] (1) $\frac{\pi}{2} + \frac{4}{3}$ (2) $\frac{\pi}{2} - \frac{4}{3}$ (3) $\frac{\pi}{2} - \frac{2}{3}$ (4) $\frac{\pi}{2} + \frac{2}{3}$ The area (in sq. units) of the region described by $\{(x, y): y^2 \le 2x \text{ and } y \ge 4x - 1\} \text{ is } :$ [JEE (Main) 2015] (1) $\frac{15}{64}$ (2) $\frac{9}{32}$ (3) $\frac{7}{32}$ (4) $\frac{5}{64}$ The area (in sq. units) of the region $\{(x, y) : y^2 \ge 2x \text{ and } x^2 + y^2 \le 4x, x \ge 0, y \ge 0\}$ [JEE(Main)-2016] $(1)\frac{\pi}{2} - \frac{2\sqrt{2}}{3}$ (2) $\pi - \frac{4}{3}$ (4) $\pi - \frac{4\sqrt{2}}{3}$ (3) $\pi - \frac{8}{3}$ 15. The area (in sq. units) of the region $\{(x, y) : x \ge 0, x + y \le 3, x^2 \le 4y \text{ and } y \le 1 + \sqrt{x} \}$ [JEE(Main)-2017] (1) $\frac{5}{2}$ (2) $\frac{59}{12}$ (3) $\frac{3}{2}$ (4) $\frac{7}{3}$ Let $g(x) = \cos x^2$, $f(x) = \sqrt{x}$ and α , β ($\alpha < \beta$) be 16. the roots of the quadratic equation $18x^2 - 9\pi x + \pi^2 = 0$. Then the area (in sq. units) bounded by the curve y = (gof)(x) and the lines

 $x = \alpha$, $x = \beta$ and y = 0 is-

(3) $\frac{1}{2}(\sqrt{2}-1)$ (4) $\frac{1}{2}(\sqrt{3}-1)$

(1) $\frac{1}{2}(\sqrt{3}+1)$

[JEE(MAIN)-2018]

(2) $\frac{1}{2}(\sqrt{3}-\sqrt{2})$

The area of the region (in sq. units), in the first

quadrant, bounded by the parabola $y = 9x^2$ and the

lines x = 0, y = 1 and y = 4, is :-

The area of the region between the curves

$$y = \sqrt{\frac{1 + \sin x}{\cos x}}$$
 and $y = \sqrt{\frac{1 - \sin x}{\cos x}}$ bounded by the

lines x = 0 and $x = \frac{\pi}{4}$ is-

$$(1) \int\limits_0^{\sqrt{2}-1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt \quad (2) \int\limits_0^{\sqrt{2}-1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt$$

(3)
$$\int_{0}^{\sqrt{2}+1} \frac{4t}{(1+t^2)\sqrt{1-t^2}} dt \quad (4) \int_{0}^{\sqrt{2}+1} \frac{t}{(1+t^2)\sqrt{1-t^2}} dt$$

*18. Area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is :-

(2)
$$\int_{1}^{e} \ln(e+1-y) dy$$

(3)
$$e - \int_{0}^{1} e^{x} dx$$

$$(4)$$
 $\int_{1}^{e} \ln y \, dy$

19. Let the straight line x = b divide the area enclosed by $y = (1 - x)^2$, y = 0 and x = 0 into two parts $R_1(0 \le x \le b)$ and $R_2(b \le x \le 1)$ such that

$$R_1 - R_2 = \frac{1}{4}$$
. Then b equals

- (1) $\frac{3}{4}$ (2) $\frac{1}{2}$ (3) $\frac{1}{3}$ (4) $\frac{1}{4}$

20. Let $f:[-1,2] \to [0,\infty)$ be a continuous function such that f(x) = f(1-x) for all $x \in [-1,2]$. Let

$$R_1 = \int_{-1}^{2} x f(x) dx$$
, and R_2 be the area of the region

bounded by y = f(x), x=-1, x=2, and the x-axis. Then -

(1) $R_1 = 2R_2$ (2) $R_1 = 3R_2$ (3) $2R_1 = R_2$ (4) $3R_1 = R_2$ The area enclosed by the curve $y = \sin x + \cos x$ 21.

and $y = |\cos x - \sin x|$ over the interval $\left|0, \frac{\pi}{2}\right|$

is

[JEE(Adv.)-2013]

- (1) $4(\sqrt{2}-1)$
- (2) $2\sqrt{2}(\sqrt{2}-1)$
- (3) $2(\sqrt{2}+1)$
- (4) $2\sqrt{2}(\sqrt{2}+1)$

22. Let $F(x) = \int_{0}^{x^2+6} 2\cos^2 t dt$ for all $x \in \mathbb{R}$ and

$$f: \left[0, \frac{1}{2}\right] \to [0, \infty)$$
 be a continuous function. For

$$a\in \left[0,\frac{1}{2}\right],$$
 if F(a) + 2 is the area of the region

bounded by x = 0, y = 0, y = f(x) and x = a, then f(0) is [JEE 2015]

*23. If the line $x = \alpha$ divides the area of region $R = \{(x, y) \in \mathbb{R}^2 : x^3 \le y \le x, \ 0 \le x \le 1\} \text{ into two}$ equal parts, then [JEE(Advanced)-2017]

(1)
$$\frac{1}{2} < \alpha < 1$$

(1)
$$\frac{1}{2} < \alpha < 1$$
 (2) $\alpha^4 + 4\alpha^2 - 1 = 0$

(3)
$$0 < \alpha \le \frac{1}{2}$$

(3)
$$0 < \alpha \le \frac{1}{2}$$
 (4) $2\alpha^4 - 4\alpha^2 + 1 = 0$

***24.** Let $f:[0,\infty)\to\mathbb{R}$ be a continuous function such

that
$$f(x) = 1 - 2x + \int_{0}^{x} e^{x-t} f(t) dt$$

for all $x \in [0, \infty)$. Then, which of the following statement(s) is (are) TRUE?

[JEE(Advanced)-2018]

- (1) The curve y = f(x) passes through the point
- (2) The curve y = f(x) passes through the point (2, -1)
- (3) The area of the region

$$\{(x, y) \in [0, 1] \times \mathbb{R} : f(x) \le y \le \sqrt{1 - x^2} \}$$
 is $\frac{\pi - 2}{4}$

(4) The area of the region

$$\{(x, y) \in [0, 1] \times \mathbb{R} : f(x) \le y \le \sqrt{1 - x^2} \}$$
is $\frac{\pi - 1}{4}$

* Marked Questions are multiple answer												
PREVIOUS YEARS QUESTIONS			ANSWER KEY		Exercise-II							
Que.	1	2	3	4	5	6	7	8	9	10		
Ans.	3	4	1	1	1	3	4	1	3	3		
Que.	11	12	13	14	15	16	17	18	19	20		
Ans.	4	1	2	3	1	4	2	2,3,4	2	3		
Que.	21	22	23	24								
Ans.	2	3	1,4	2,3								