PREVIOUS YEARS' QUESTIONS

EXERCISE-II

[AIEEE-2011]

THERMODYNAMICS

1. A process $A \longrightarrow B$ is difficult to occur directly instead it takes place in three successive steps.

[JEE 2006]

$$\Delta S (A \longrightarrow C) = 50 \text{ e.u.}$$

$$\Delta S (C \longrightarrow D) = 30 \text{ e.u.}$$

$$\Delta S (B \longrightarrow D) = 20 \text{ e.u.}$$

Where e.u. is entropy unit.

Then the entropy change for the process $\Delta S (A \longrightarrow B)$ is :-

- (1) + 100 e.u.
- (3) 60 e.u.
- (3) 100 e.u.
- (4) + 60 e.u.
- 2. Assuming that water vapour is an ideal gas, the internal energy change (ΔU) when 1 mol of water is vapourised at 1 bar pressure and 100°C, (Given: Molar enthalpy of vapourisation of water at 1 bar and 373 K = 41 kJ mol⁻¹ and R = 8.3 J mol⁻¹ K⁻¹ will be):- [AIEEE-2007]
 - (1) 4.100 kJ mol⁻¹
- (2) 3,7904 kJ mol⁻¹
- (3) 37.904 kJ mol⁻¹
- (4) 41.00 kJ mol⁻¹
- 3. In conversion of lime-stone to lime,

$$CaCO_3(s) \longrightarrow CaO(s) + CO_2(g)$$

the values of ΔH° and ΔS° are +179.1 kJ mol⁻¹ and 160.2 J/K respectively at 298 K and 1 bar. Assuming that ΔH° and ΔS° do not change with temperature, temperature above which conversion of limestone to lime will be spontaneous is :-

[AIEEE-2007]

- (1) 1008 K
- (2) 1200 K
- (3) 845 K
- (4) 1118 K
- **4.** For the process $H_2O(1)$ (1 bar, 373 K) \longrightarrow $H_2O(g)$ (1 bar, 373 K), the correct set of thermodynamic parameters is :- [JEE 2007]
 - (1) $\Delta G = 0$, $\Delta S = + ve$
 - (2) $\Delta G = 0$, $\Delta S = -ve$
 - (3) $\Delta G = + ve$, $\Delta S = 0$
 - (4) $\Delta G = -ve$, $\Delta S = +ve$
- **5.** Among the following, the state function(s) is (are)

[JEE 2009]

- (1) Internal energy
- (2) Irreversible expansion work
- (3) Reversible expansion work
- (4) Molar enthalpy

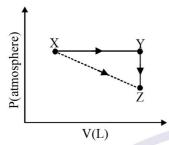
- **6.** For a particular reversible reaction at temperature T, ΔH and ΔS were found to be both +ve. If T_e is the temperature at equilibrium, then reaction would be spontaneous when :- [AIEEE-2010]
 - (1) $T = T_e$
 - (2) $T_e > T$
 - (3) $T > T_e$
 - (4) T_e is 5 times T
- 7. The value of enthalpy change (ΔH) for the reaction $C_2H_5OH_{(\ell)}+3O_{2(g)}\rightarrow 2CO_{2(g)}+3H_2O_{(\ell)}$ at $27^{\circ}C$ is -1366.5 kJ mol⁻¹. The value of internal energy change for the above reaction at this
 - (1) -1371.5 kJ

temperature will be :-

- (2) -1369.0 kJ
- (3) -1364.0 kJ
- (4) -1361.5 kJ
- 8. The entropy change involved in the isothermal reversible expansion of 2 moles of an ideal gas from a volume of 10 dm³ to a volume of 100 dm³ at 27°C is:
 - (1) 32.3 J mol-1 K-1
 - (2) 42.3 J mol-1 K-1
 - (3) 38.3 J mol-1 K-1
 - (4) 35.8 J mol-1 K-1
- 9. The incorrect expression among the following is :(1) $K = e^{-\Delta G^{\circ}/RT}$ [AIEEE-2012]

$$(2) \frac{\Delta G_{\text{system}}}{\Delta S_{\text{total}}} = -T$$

(3) In isothermal process, $W_{reversible} = -nRT ln \frac{V_f}{V_i}$


$$(4) lnK = \frac{\Delta H^{\circ} - T\Delta S^{\circ}}{RT}$$

10. The difference between the reaction enthalpy change $(\Delta_r H)$ and reaction internal energy change $(\Delta_r U)$ for the reaction :

[JEE-MAINS(online)-2012]

- $2C_6H_6(\ell) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(\ell)$ at 300 K is (R = 8.314 J mol⁻¹ K⁻¹)
- (1) 0 J mol⁻¹
- (2) 2490 J mol⁻¹
- (3) –2490 J mol⁻¹
- (4) -7482 J mol⁻¹

11. For an ideal gas, consider only P-V work in going from an initial state X to the final state Z. The final state Z can be reached by either of the two paths shown in the figure. Which of the following choice(s) is (are) correct? [take ΔS as change in entropy and w as work done] [JEE 2012]

- (1) $\Delta S_{x \to z} = \Delta S_{x \to y} + \Delta S_{y \to z}$
- (2) $W_{x\to z} = W_{x\to y} + W_{y\to z}$
- (3) $W_{x \to y \to z} = W_{x \to y}$
- (4) $\Delta S_{x \to y \to z} = \Delta S_{x \to y}$
- **12.** Which of the following statements/relationships is not correct in thermodynamic changes?

[JEE-MAINS(online)-2014]

- (1) q= -nRT $\ell n \frac{V_2}{V_1}$ (isothermal reversible expansion of an ideal gas)
- (2) For a system at constant volume, heat involved merely changes to internal energy.
- (3) $w = -nRT \ln \frac{V_2}{V_1}$ (isothermal reversible expansion

of an ideal gas)

- (4) $\Delta U = 0$ (isothermal reversible expansion of a gas)
- 13. The molar heat capacity (C_p) of CD_2O is 10 cals at 1000 K. The change in entropy associated with cooling of 32 g of CD_2O vapour from 1000 K to 100 K at constant pressure will be

[JEE-MAINS-(online) 2014]

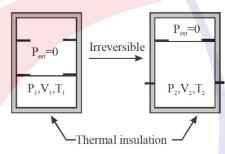
- (D = deuterium, at. mass = 2u)
- (1) -23.03 cal deg^{-1}
- (2) 2.303 cal deg-1
- (3) 23.03 cal deg-1
- (4) -2.303 cal deg⁻¹

14. The entropy (S°) of the following substances are [JEE-MAINS-(online) 2014]

 ${\rm CH_4} \; {\rm (g)} \; 186.2 \; {\rm J} \; {\rm K}^{\rm -1} \; {\rm mol}^{\rm -1}$

 ${\rm O_2}~{\rm (g)}~205.0~{\rm J}~{\rm K}^{-1}~{\rm mol}^{-1}$

CO₂ (g) 213.6 J K⁻¹ mol⁻¹


 H_2O (I) 69.9 J K^{-1} mol⁻¹

The entropy change ($\Delta S^{\underline{o}}\!)$ for the reaction

 $CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(\ell)$ is:-

- (1) $-312.5 \text{ JK}^{-1} \text{ mol}^{-1}$
- $(2) 37.6 \text{ JK}^{-1} \text{ mol}^{-1}$
- $(3) 108.1 \text{ JK}^{-1} \text{ mol}^{-1}$
- $(4) 242.8 \text{ JK}^{-1} \text{ mol}^{-1}$
- **15.** An ideal gas in thermally insulated vessel at internal pressure = P_1 , volume = V_1 and absolute temperature = T_1 expands irrversibly against zero external pressure, as shown in the diagram. The final internal pressure, volume and absolute temperature of the gas are P_2 , V_2 and T_2 , respectively. For this expansion,

[JEE 2014]

- (1) q = 0
- (2) $T_2 = T_1$
- (3) $P_2V_2 = P_1V_1$
- (4) $P_2 V_2^{\gamma} = P_1 V_1^{\gamma}$
- **16.** ΔU is equal to
- [JEE-MAINS(offline)-2017]
- (1) Isochoric work
- (2) Isobaric work
- (3) Adiabatic work
- (4) Isothermal work
- 17. The enthalpy change on freezing of 1 mol of water at 5° C to ice at -5° C is:

[JEE-MAINS(online)-2017]

(Given $\Delta_{\text{fus}}H = 6 \text{ kJ mol}^{-1} \text{ at } 0^{\circ}\text{C}$, $C_p(H_2O, 1) = 75.3 \text{ J mol}^{-1} \text{ K}^{-1}$, $C_p(H_2O, s) = 36.8 \text{ J mol}^{-1} \text{ K}^{-1}$)

- (1) 6.56 kJ mol-1
- (2) 5.81 kJ mol⁻¹
- (3) 6.00 kJ mol-1
- (4) 5.44 kJ mol⁻¹
- **18.** An ideal gas undergoes isothermal expansion at constant pressure. During the process:-

[JEE-MAINS-(online) 2017]

- (1) enthalpy remains constant but entropy increases.
- (2) enthalpy increases but entropy decreases.
- (3) Both enthalpy and entropy remain constant.
- (4) enthalpy decreases but entropy increases.

THERMOCHEMISTRY

- **19.** Which of the following is not an endothermic reaction? [JEE 1999]
 - (1) Combustion of methane
 - (2) Decomposition of water
 - (3) Dehydrogenation of ethene to acetylene
 - (4) Conversion of graphite to diamond
- **20.** ΔH_f° for $CO_2(g)$, CO(g) and $H_2O(g)$ are -393.5, -110.5 and -241.8 kJ mol⁻¹ respectively. The standard enthalpy change (in kJ) for the reaction $CO_2(g) + H_2(g) \longrightarrow CO(g) + H_2O(g)$ is **[JEE 2000]**
 - (1)524.1
- (2)41.2
- (3) 262.5
- (4) 41.2
- **21.** The enthalpy changes for the following processes are listed below: [AIEEE-2006]
 - $Cl_2(g) = 2Cl(g),$
- 242.3 kJ mol-1
- $I_2(g) = 2I(g)$
- 151.0 kJ mol⁻¹
- ICl(g) = I(g) + Cl(g),
- 211.3 kJ mol⁻¹
- $I_2(s) = I_2(g),$
- 62.76 kJ mol-1

Given that the standard states for iodine and chlorine are $I_2(s)$ and $Cl_2(g)$, the standard enthalpy of formation for ICl(g) is:-

- (1) -16.8 kJ mol⁻¹
- (2) +16.8 kJ mol⁻¹
- (3) +244.8 kJ mol⁻¹
- (4) -14.6 kJ mol⁻¹
- **22.** Oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below:

$$\frac{1}{2} \operatorname{Cl}_{2}(g) \xrightarrow{\frac{1}{2} \Delta_{\operatorname{diss}} H^{\Theta}} \operatorname{Cl}(g) \xrightarrow{\Delta_{\operatorname{eg}} H^{\Theta}} \operatorname{Cl}^{-}(g)$$

$$\xrightarrow{\Delta_{\operatorname{hyd}} H^{\Theta}} \operatorname{Cl}^{-}(\operatorname{aq}) \qquad [AIEEE-2008]$$

The energy involved in the conversion of $\frac{1}{2}$ Cl₂(g) to Cl⁻(aq)

(using the data $\Delta_{diss}^{}$ $H_{\text{Cl}_2}^{\text{O}}$ = 240 kJ mol $^{\!-1},$

$$\Delta_{\rm eg}~H_{\rm Cl}^{\rm O}=-349~{\rm kJ~mol^{-1}},$$

$$\Delta_{\text{bud}} H_{\text{Cl}^{-}}^{\Theta} = -381 \text{ kJ mol}^{-1}$$

will be:-

- (1) -610 kJ mol⁻¹
- (2) -850 kJ mol⁻¹
- $(3) + 120 \text{ kJ mol}^{-1}$
- $(4) + 152 \text{ kJ mol}^{-1}$

- **23.** On the basis of the following thermochemical data $\left(\Delta G_f^0 H_{(aq)}^+ = 0\right)$
 - $H_2O(\ell) \rightarrow H^+(aq) + OH^-(aq)$; $\Delta H = 57.32 \text{ kJ}$

$$H_2(g) + \frac{1}{2} O_2(g) \rightarrow H_2O(\ell) ; \Delta H = -286.20 \text{ kJ}$$

The value of enthalpy of formation of OH^- ion at $25^{\circ}C$ is :- [AIEEE-2009]

- (1) + 228.88 kJ
- (2) –343.52 kJ
- (3) -22.88 kJ
- (4) -228.88 kJ
- **24.** In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is

$$CH_3OH(\ell) + \frac{3}{2}O_2(g) \longrightarrow CO_2(g) + 2H_2O(\ell)$$

At 298 K standard Gibb's energies of formation for $CH_3OH(\ell)$, $H_2O(\ell)$ and $CO_2(g)$ are -166.2, -237.2 and -394.4 kJ mol⁻¹ respectively. If standard enthalpy of combustion of methanol is -726 kJ mol⁻¹, efficiency of the fuel cell will be [AIEEE-2009]

- (1) 90%
- (2) 97%
- (3) 80%
- (4) 87%
- **25.** The standard enthalphy of formation of NH₃ is -46.0 kJ mol⁻¹. If the enthalpy of formation of H₂ from its atoms is -436 kJ mol⁻¹ and that of N₂ is -712kJ mol⁻¹, the average bond enthalpy of N-H bond in NH₃ is :- [AIEEE-2010]
 - (1) -1102 kJ mol-1
- (2) -964 kJ mol⁻¹
- $(3) + 352 \text{ kJ mol}^{-1}$
- $(4) + 1056 \text{ kJ mol}^{-1}$
- **26.** Consider the reaction : [AIEEE-2011] $4NO_2(g) + O_2(g) \rightarrow 2N_2O_5(g)$, $\Delta_r H = -111kJ$. If $N_2O_5(s)$ is formed instead of $N_2O_5(g)$ in the above reaction, the $\Delta_r H$ value will be :- (Given, ΔH of sublimation for N_2O_5 is $54~kJ~mol^{-1}$)
 - (1) -165 kJ
- (2) + 54 kJ
- (3) + 219 kJ
- (4) -219 kJ
- **27.** The enthalpy of neutralisation of NH_4OH with HCl is -51.46 kJ mol^{-1} and the enthalpy of neutralisation of NaOH with HCl is -55.90 kJ mol^{-1} . The enthalpy of ionisation of NH_4OH is:

[JEE-MAINS (online) 2012]

- $(1) + 107.36 \text{ kJ mol}^{-1}$
- (2) -4.44 kJ mol⁻¹
- (3) -107.36 kJ mol⁻¹
- (4) +4.44 kJ mol⁻¹
- **28.** Using the data provided, calculate the multiple bond energy (kJ mol⁻¹) of a C = C bond in C_2H_2 . That energy is (take the bond energy of a C-H bond as 350 kJ mol^{-1} .) [JEE 2012]
 - 2 C(s) + $H_2(g) \rightarrow C_2H_2(g) \Delta H = 225 \text{ kJ mol}^{-1}$
 - $2 C(s) \longrightarrow 2C(g)$ $H_{9}(g) \longrightarrow 2H(g)$
- $\Delta H = 1410 \text{ kJ mol}^{-1}$ $\Delta H = 330 \text{ kJ mol}^{-1}$
- (1) 1165
- (2) 837
- (3) 865
- (4) 815

29. Given :

[JEE-MAINS (online) 2013]

(1)
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(h)$$
;

$$\Delta H^{\circ}_{298K} = -285.9 \text{ kJ mol}^{-1}$$

(2)
$$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(g)$$
;

$$\Delta H^{\circ}_{298K} = -241.8 \text{ kJ mol}^{-1}$$

The molar enthalpy of vapourisation of water will be :-

- (1) 241. 8 kJ mol⁻¹
- (2) 527.7 kJ mol⁻¹
- (3) 44.1 kJ mol⁻¹
- (4) 22.0 kJ mol⁻¹

30. Given

[JEE-MAINS (online) 2013]

Reaction

Energy Change (in kJ)

 $Li(s) \longrightarrow Li(g)$

161

 $Li(g) \longrightarrow Li^+(g)$

520

77

$$\frac{1}{2}$$
 F₂(g) \longrightarrow F(g)

$$F(g) + e^{-} \longrightarrow F^{-}(g)$$

(Electron gain enthalpy)

$$Li^+(g) + F^-(g) \longrightarrow LiF(s)$$
 -1047

$$\text{Li(s)} + \frac{1}{2} \text{F}_2(\text{g}) \longrightarrow \text{Li F(s)} -617$$

Based on data provided, the value of electron gain enthalpy of fluorine would be:

- (1) -300 kJ mol^{-1}
- (2) -328 kJ mol⁻¹
- $(3) -350 \text{ kJ mol}^{-1}$
- (4) -228 kJ mol⁻¹

31. For complete combustion of ethanol,

$$C_2H_5OH(\ell) + 3O_2(g) \rightarrow 2CO_2(g) + 3H_2O(\ell)$$
,
the amount of heat produced as measured in bomb

the amount of heat produced as measured in bomb calorimeter, is $1364.47 \text{ kJ} \text{ mol}^{-1}$ at 25°C . Assuming ideality the Enthalpy of combustion, $\Delta_c H$, for the raction will be (R = $8.314 \text{ kJ} \text{ mol}^{-1}$):-

[JEE-MAINS(offline)2014]

- (1) -1460.50 kj mol $^{-1}$
- $(2) 1350.50 \text{ kJ mol}^{-1}$
- $(3) 1366.95 \text{ kJ mol}^{-1}$
- (4) 1361.95 kJ mol⁻¹

32. The standard enthalpy of formation $(\Delta_f H^o_{298})$ for methane, CH_4 is 74.9 kJ mol⁻¹. In order to calculate the average energy given out in the formation of a C-H bond from this it is necessary to know which one of the following?

[JEE-MAINS(online) 2014]

- (1) the dissociation energy of the hydrogen molecule, H_2 .
- (2) the dissociation energy of H₂ and enthalpy of sublimation of carbon (graphite).
- (3) the first four ionisation energies of carbon and electron affinity of hydrogen.
- (4) the first four ionisation energies of carbon.
- **33.** The heats of combustion of carbon and carbon monoxide are 393.5 and 285.5 kJ mol⁻¹, respectively. The heat of formation (in kJ) of carbon monoxide per mole is :- [JEE-MAINS(offline)2016]
 - (1) 110.5
- (2) 110.5
- (3) 676.5
- (4) 676.5
- **34.** Given

[JEE-MAINS(offline)2017]

$$C_{(grahite)} + O_2(g) \rightarrow CO_2(g) ;$$

 $\Delta_r H^{\circ} = -393.5 \text{ kJ mol}^{-1}$

$$H_2(g) + \frac{1}{2}O_2(g) \to H_2O(1);$$

$$\Delta_{r}H^{\circ} = -285.8 \text{ kJ mol}^{-1}$$

$$CO_2(g) + 2H_2O(1) \rightarrow CH_4(g) + 2O_2(g);$$

$$\Delta_{\rm r} {\rm H}^{\circ} = +890.3 \text{ kJ mol}^{-1}$$

Based on the above thermochemical equations, the value of $\Delta_.H^\circ$ at 298 K for the reaction

$$C_{(qrahite)} + 2H_2(g) \rightarrow CH_4(g)$$
 will be :-

- (1) +74.8 kJ mol⁻¹
- $(2) + 144.0 \text{ kJ mol}^{-1}$
- (3) -74.8 kJ mol⁻¹
- (4) -144.0 kJ mol⁻¹
- **35.** The enthalpy change on freezing of 1 mol of water at 5° C to ice at -5° C is :

(Given
$$\Delta_{\text{fus}}H = 6 \text{ kJ mol}^{-1} \text{ at } 0^{\circ}\text{C}$$
,

$$C_P(H_2O, 1) = 75.3 \text{ J mol}^{-1} \text{ K}^{-1},$$

$$C_p(H_2O, s) = 36.8 \text{ J mol}^{-1} \text{ K}^{-1}$$

[JEE-MAINS(online)2017]

- (1) 6.56 kJ mol⁻¹
- (2) 5.81 kJ mol⁻¹
- (3) 6.00 kJ mol-1
- (4) 5.44 kJ mol⁻¹

PREVIOUS YEARS QUESTIONS				ANSWER KEY			Exercise-II			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	4	3	4	1	1,4	3	3	3	4	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1,3	1	1	4	1,2,3	3	1	1	1	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	1	4	2	3	4	4	4	3	2
Que.	31	32	33	34	35					
Ans.	3	2	1	3	1					