- 1. Two point charge of 100 µC and -4 µC are positioned at points $(-2\sqrt{3}, 3\sqrt{3}, -4)$ and $(4\sqrt{3}, -5\sqrt{3}, 6)$ respectively of a Cartesian coordinate system. Find the force vector on the -4 µC charge? All the coordinates are in meters.
 - (1) $9 \times 10^{-4} \left(3\sqrt{3}\hat{i} 4\sqrt{3}\hat{j} + 5\hat{k} \right)$
 - (2) $9 \times 10^{-4} \left(-3\sqrt{3}\hat{i} + 4\sqrt{3}\hat{i} 5\hat{k} \right)$
 - (3) $2.25 \times 10^{-4} \left(-3\sqrt{3}\hat{i} + 4\sqrt{3}\hat{j} 5\hat{k} \right)$
 - (4) $2.25 \times 10^{-4} \left(3\sqrt{3}\hat{i} 4\sqrt{3}\hat{j} + 5\hat{k} \right)$
- 2. Three charges +q, +2q and +4q are connected by strings as shown in the figure. What is ratio of tensions in the strings AB and BC.

- (1) 1 : 2
- (2) 1 : 3
- (3) 2 : 1
- $(4) \ 3 : 1$
- 3. As shown in the figure to the right, an insulating rod is set into the shape of a semicircle. The left half of the rod has a charge of + Q uniformly distributed along its length, and the right half of the rod has a charge of -Q uniformly distributed along its length. What vector shows the correct direction of the electric field at point P, the centre of the semicircle?

(1) A

(2) B

(3) C

- (4) D
- 4. A particle of mass m, charge –Q is constrained to move along the axis of a ring of radius a. The ring carries a uniform charge density + λ along its circumference. Initially, the particle lies in the plane of the ring at a point where no net force acts on it. The period of oscillation of the particle when it is displaced slightly from its equilibrium position is:-

(1)
$$T = 4\pi \sqrt{\frac{\epsilon_0 ma^2}{\lambda Q}}$$

(1)
$$T = 4\pi \sqrt{\frac{\varepsilon_0 ma^2}{\lambda O}}$$
 (2) $T = 2\pi \sqrt{\frac{2\varepsilon_0 ma^2}{\lambda O}}$

(3)
$$T = 2\pi \sqrt{\frac{4\epsilon_0 ma^2}{\lambda Q}}$$
 (4) $T = 2\pi \sqrt{\frac{\epsilon_0 ma^2}{2\lambda Q}}$

5. A wheel having mass m has charges +q and -q on diametrically opposite points. It remains in equilibrium on a rough inclined plane in the presence of uniform vertical electric field E =

- (4) none
- 6. A hemispherical surface (half of a spherical surface) of radius R is located in a uniform electric field E that is parallel to the axis of the hemisphere. What is the magnitude of the electric flux through the hemisphere surface?

(1) 0

- (2) $4\pi R^2 E/3$
- (3) $2\pi R^2 E$
- (4) $\pi R^2 E$
- 7. A point charge +Q is positioned at the center of the base of a square pyramid as shown. The flux through one of the four identical upper faces of the pyramid is

- (1) $\frac{Q}{16\varepsilon_0}$

- (4) None of these

ELECTROSTATICS

8. An infinite, uniformly charged sheet with surface charge density σ cuts through a spherical Gaussian surface of radius R at a distance x from its center, as shown in the figure. The electric flux Φ through the Gaussian surface is :-

- (1) $\frac{\pi R^2 \sigma}{\epsilon_0}$
- $(2) \frac{2\pi (R^2 x^2) \sigma}{\varepsilon_0}$
- $(3) \frac{\pi (R-x)^2 \sigma}{\varepsilon}$
- $(4) \frac{\pi(R^2 x^2) \sigma}{\varepsilon_0}$
- 9. Potential energy of a system comprising of point charges is U₁. When a charge q is added in the system without disturbing other charges, the potential energy becomes U2. The potential of the point where the charge q is placed in the system
 - $(1)\frac{U_2 U_1}{q}$
- $(2)\frac{U_1 U_2}{q}$
- $(3)\frac{U_1 + U_2}{2a}$
- $(4)\frac{U_2 U_1}{2q}$
- 10. Two fixed charges A and B of 5 µC each are separated by a distance of 6m. C is the mid point of the line joining A and B. A charge 'Q' of -5µC is shot perpendicular to the line joining A and B through C with a kinetic energy of 0.06J. The charge 'Q' comes to rest at a point D. The distance CD is:-
 - (1) 3 m
- (2) $\sqrt{3}$ m (3) $3\sqrt{3}$ m (4) 4 m
- 11. Figure shows three circular arcs, each of radius R and total charge as indicated. The net electric potential at the centre of curvature is :-

- $(1) \frac{Q}{4\pi \in_{0} R}$
- $(2) \frac{Q}{2\pi \in_{0} R}$
- $(4) \frac{Q}{\pi \in R}$

12. The electric field intensity at all points in space is given by $\vec{E} = \sqrt{3}\hat{i} - \hat{j}$ volts/metre. The nature of equipotential lines in x-y plane is given by :-

13. The drawing shows four points surrounding an electric dipole. Which one of the following expressions best ranks the electric potential at these four locations?

- (1) 1 > 2 = 4 > 3
- (2) 3 > 2 > 4 > 1(4) 2 = 4 > 1 = 3
- (3) 3 > 2 = 4 > 1

In an electric field the potential at a point is given by the following relation $V = \frac{343}{r}$. The electric field

at
$$\vec{r}=3\hat{i}+2\hat{j}+6\hat{k}$$
 is :

- (1) $21\hat{i} + 14\hat{j} + 42\hat{k}$ (2) $3\hat{i} + 2\hat{j} + 6\hat{k}$
- (3) $\frac{1}{7} \left(3\hat{i} + 2\hat{j} + 6\hat{k} \right)$ (4) $-\left(3\hat{i} + 2\hat{j} + 6\hat{k} \right)$
- 15. From a point if we move in a direction making an angle θ measured from +ve x-axis, the potential gradient is given as $\frac{dv}{dr} = 2\cos\theta$. Find the direction and magnitude of electric field at that point.
 - (1) $2\hat{i}$

- $(2) 2\hat{i}$
- (3) $\hat{i} + \hat{j}$
- (4) $-\hat{i}$ $+\hat{j}$
- Figure shows equi-potential surfaces for a two **16**. charges system. At which of the labeled points point will an electron have the highest potential energy?

- (1) Point A
- (2) Point B
- (3) Point C
- (4) Point D
- **17**. Charge Q, 2Q and –Q are given to three concentric conducting spherical shells A, B and C respectively. The ratio of charges on the inner and the outer surfaces of the shell 'C' will be

- (1) $\frac{3}{4}$ (2) $-\frac{3}{4}$ (3) $\frac{3}{2}$ (4) $-\frac{3}{2}$

18. If the electric potential of the inner metal sphere is 10 volt & that of the outer shell is 5 volt, then the potential at the centre will be:

- (1) 10 volt
- (2) 5 volt
- (3) 15 volt
- (4) 0
- 19. Three conducting concentric spherical shells of radius R, 2R and 3R have charges Q, $\frac{Q}{3}$ and -2Qrespectively. The intermediate shell is now grounded. Find the charge flow into the earth.

- (1) $\frac{Q}{3}$ (2) $\frac{2Q}{3}$ (3) Q
- (4) 0
- 20. Figure shows a system of three concentric metal shells A, B and C with radii a, 2a and 3a respectively. Shell B is earthed and shell C is given a charge Q. Now if shell C is connected to shell A, then the final charge on the shell B, is equal to:

- (1) $-\frac{4Q}{13}$ (2) $-\frac{8Q}{11}$ (3) $-\frac{5Q}{3}$ (4) $-\frac{3Q}{7}$

A point charge q is placed at a distance r from 21. center of a conducting neutral sphere of radius R (r>R). The potential at any point P inside the sphere at a distance r, from point charge due to induced charge of the sphere is given by

- (4) $-\frac{Kq}{r} + \frac{Kq}{R}$
- 22. Figure shows two uniform charged concentric spherical shell. Both charges are positive, Select correct statement :-

- (1) Electric field intensity at B may be greater than electric field intensity at C.
- (2) Electric field intensity at B must be greater than electric field intensity at C.
- (3) Potential at A greater than potential at B
- (4) If a charge moves from B to C work done by electric force must be positive.
- 23. Which of the following is true for the figure showing electric lines of force? (E is electrical field, V is potential)

- (1) $E_A > E_B$ (3) $V_A > V_B$

- (2) $E_B > E_A$ (4) $V_B > V_A$
- 24. A hollow closed conductor of irregular shape is given some charge. Which of the following statements are correct?
 - (1) The entire charge will appear on its outer surface.
 - (2) All points on the conductor will have the same potential.
 - (3) All points on its surface will have the same charge density.
 - (4) All points just outside it will have the same electric intensity.

25. A conducting body is given charge Q and charge -q has been placed in each of the cavity, which of the following statements is/are true?

- (1) If Q = 2q, then conducting body will be at zero potential.
- (2) If an external electric field is applied then the charge distribution on the outer surface of conductor would change.
- (3) The potential of any point inside the cavity is less than that of conducting body.
- (4) None of these
- Two short electric dipoles are placed as shown. The 26. energy of electric interaction between these dipoles will be :-

- (1) $\frac{2kP_1P_2\cos\theta}{r^3}$ (2) $\frac{-2kP_1P_2\cos\theta}{r^3}$
- (3) $\frac{-2kP_1P_2\sin\theta}{r^3}$ (4) $\frac{-4kP_1P_2\cos\theta}{r^3}$
- 27. A dipole having dipole moment p is placed in front of a solid uncharged conducting sphere as shown in the diagram. The net potential at point A lying on the surface of the sphere is :-

- (2) $\frac{kp\cos^2\phi}{r^2}$

(3) 0

 $(4) \frac{2kp\cos^2\phi}{r^2}$

- **28.** In small drops of same size are charged to V volts each. If they coalesce to form a signal large drop, then its potential will be :-
 - (1) V/n

(2) Vn

- (3) $Vn^{1/3}$
- (4) Vn^{2/3}
- **29.** A metallic solid sphere is placed in a uniform electric field. The lines of force follow the path (s) shown in figure as:

- (1) 1
- (2) 2
- (3) 3
- (4) 4

30. The variation of electric field between the two charges q_1 and q_2 along the line joining the charges is plotted against distance from q_1 (taking rightward direction of electric field as positive) as shown in the figure. Then the correct statement is :-

- (1) q_1 and q_2 are positive and $q_1 < q_2$
- (2) q_1 and q_2 are positive and $q_1 > q_2$
- (3) $q_{\scriptscriptstyle 1}$ is positive and $q_{\scriptscriptstyle 2}$ is negative and $q_{\scriptscriptstyle 1} < q_{\scriptscriptstyle 2}$
- (4) q_1 and q_2 are negative and $q_1 < q_2$

				AN	SWER KEY		Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	2	2	3	2	2	4	3	4	1	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	1	2	2	2	4	1	4	2
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	1,3	1,4	1,2	1,2,3	2	2	4	4	1