p-BLOCK ELEMENTS

EXERCISE-I

- 1. In which of the dimerisation process, the achievement of the octet is not the driving force.

 - $\begin{array}{l} \text{(1) } 2\text{AlCl}_3 \longrightarrow \text{Al}_2\text{Cl}_6 \\ \text{(2) } \text{BeCl}_2 \longrightarrow \text{BeCl}_2 \text{ (solid)} \\ \text{(3) } 2\text{ICl}_3 \longrightarrow \text{I}_2\text{Cl}_6 \\ \text{(4) } 2\text{NO}_2 \longrightarrow \text{N}_2\text{O}_4 \end{array}$
- 2. Column I

Column II

- (A) B₂H₆
- (P) $(3C-4e^{-})$ bond
- (B) Be_2H_4
- $(Q) (3C-2e^{-}) bond$
- (C) Be_2Cl_4
- (R) Vacant orbital participation in hybridisation
- (D) $Al_{2}(CH_{3})_{6}$
- (S) sp³ hybridisation (T) sp² hybridisation
- (1) (A) Q,R,S;(B) Q,R,T;(C) P,R,T;(D) Q,R,S
- (2) (A) Q,R,S,T;(B) R,T;(C) P,R,T;(D) R,S
- (3) (A) S,T; (B) R,T; (C) P,R,T; (D) R,S,T
- (4) (A) -Q,S,T; (B) -R,T; (C) -P,R; (D) -R,S,T
- 3. A mineral contain following tetrameric anion in which $\bullet = Si$, $\bigcirc = oxygen$

Select correct option (s) about anion in mineral-

- (1) Formula of anion is $(SiO_3)_n^{2n}$ (where n = 4).
- (2) The total 10 negative charges are present in this anion.
- (3) It has three shared oxygen/corners and ten unshared oxygen/corners.
- (4) It is non planar
- 4. Silicate are existing mainly in the polymeric form. Several categories are available with us which depend on the mode of sharing of corners of SiO₄⁴tetrahedron.

Which of the following pyroxene chain silicate is having same formula.

(4) All of these

5. The geometry with respect to the central atom of the following molecules are:

 $N(SiH_3)_3$; Me_3N ;

- (1) planar, pyramidal, planar
- (2) planar, pyramidal, pyramidal
- (3) pyramidal, pyramidal, pyramidal
- (4) pyramidal, planar, pyramidal
- 6. Column-I

Column-II

- (A) $N(SiH_2)$
- (P) $p\pi$ - $d\pi$ back bonding
- (B) $\underline{N}(CH_3)_3$
- (Q) sp³ hybridisation for underlined atom
- (C) $\underline{B}_{2}H_{e}$
- (R) $p\pi-p\pi$ back bonding
- (D) <u>B</u>F₃
- (S) neither $p\pi p\pi$ nor $p\pi$ - $d\pi$ back bonding
- (T) Underlined atom combine with electron rich molecule
- (1) (A) -P; (B) -Q,S; (C) -Q,S,T; (D) -R,T
- (2) (A) -P, Q; (B) -Q, S, T; (C) -R, T; (D) -S, T
- (3) (A) -P,Q; (B) -R,T; (C) -S,T; (D) -R,S,T
- (4) (A) -R, S, T; (B) -Q, R, S, T; (C) -S, T; (D) -P, Q, S, T
- 7. Choose the correct on the Cl-O bond length in NaClO₄.
 - (1) All Cl-O bonds are of equal length.
 - (2) Three Cl–O bonds are of equal of length one longer.
 - (3) Two Cl-O bonds are of same length which are longer compound to other two Cl-O bond length.
 - (4) All Cl–O bond lengths are different

8. Column I

Column II (Identical Property in pairs of species)

(A) PCl₃F₂, PCl₂F₃

(Pair of species)

- (P) Hybridisation of central atom
- (B) BF₃ & BCl₃
- (Q) Shape of molecule / ion
- (C) $CO_2 \& CN_2^{-2}$
- (R) µ (dipole moment)
- (D) $C_6H_6 \& B_3N_3H_6$
 - (S) Total number of electrons
- (1) (A) P.Q; (B) P.Q.R; (C) P.Q.RS; (D) P.Q.R.S
- (2) (A) P,Q,R,S; (B) P,Q; (C) R,S; (D) P,Q
- (3) (A) P,Q; (B) S,R; (C) Q,R,S; (D) R,S
- (4) (A) P,Q; (B) S,R; (C) P,R; (D) P,Q,R

9. Match the Column:

(1) (A) - Q; (B) - P,Q,S; (C) - R,S; (D) - Q,S

of electrons is more than 9

- (2) (A) P,Q; (B) P,Q,S; (C) S,R; (D) P,S
- (3) (A) R,S; (B) P,Q,S; (C) S,R; (D) P,S
- (4) (A) Q,S; (B) P,Q,S; (C) S,R; (D) P,Q,R,S
- 10. Select correct statement about hydrolysis of BCl_3 and NCl_3
 - (1) NCl₃ is hydrolysed and gives HOCl but BCl₃ is not hydrolysed.
 - (2) Both NCl₃ and BCl₃ on hydrolysis gives HCl
 - (3) NCl₃ on hydrolysis gives HOCl but BCl₃ gives HCl
 - (4) Both NCl₃ and BCl₃ on hydrolysis gives HOCl
- **11.** Which of the following statements are correct for SOF₄ molecule.
 - (1) It is square pyramidal in shape
 - (2) On hydrolysis it produces H₂SO₄ and HF
 - (3) All S-F bond lengths are of identical length
 - (4) Two S–F bond lengths are longer compared to other two S–F bond lengths
- **12. Statement-1**: H₃BO₃ in water behaves as monobasic acid.

Statement-2: The ionisation reaction is:

$$H_3BO_3 + H_2O \Longrightarrow B(OH)_4^- + H^+$$

- (1) Statement-1 is true, statement-2 is true and statement-2 is correct explanation for statement-1.
- (2) Statement-1 is true, statement-2 is true and statement-2 is NOT the correct explanation for statement-1
- (3) Statement-1 is true, statement-2 is false.
- (4) Statement-1 is false, statement-2 is true.
- **13.** For H_3PO_3 and H_3PO_4 , the correct choice is
 - (1) H_3PO_3 is dibasic and reducing agent.
 - (2) H_3PO_3 is dibasic and non reducing agent.
 - (3) H₃PO₄ is tribasic and reducing agent
 - (4) H₃PO₄ is tribasic and non reducing agent.

- **14.** Which of the following statement is **incorrect**?
 - (1) Oxidizing power order: SiCl₄ < SnCl₄ < PbCl₄
 - (2) Ionic character order : CsBr > RbBr > KBr > NaBr > LiBr
 - (3) The ionic character of lead (II) halides decreases with increase in atomic no. of halogen
 - (4) The oxidation state of T/in T/I_3 is +3.
- 15. Choose the correct statement regarding bond angle:-
 - (1) \widehat{FCF} in $F_2CO < \widehat{HCH}$ in H_2CO
 - (2) \widehat{BrPBr} in $PBr_3 < \widehat{FPF}$ in PF_3
 - (3) $\widehat{FSF}(eq) > \widehat{FSF}(ax)$ in SF_4
 - (4) All \widehat{FIF} angles in IF_5 are identical

16. Column I Column II

- (A) Dithionous acid (P) S–O–S bond is not present
- (B) Thiosulphuric acid (Q) All S atom in the molecule has oxidation state +3
- (C) Caro's acid

 (R) Acidic strength of

 OH groups present
 in the molecule is
 different
- (D) Pyrosulphurous acid (S) at least one S atom has oxidation state +5 in molecule
- (1) (A) P,Q; (B) P; (C) P,Q; (D) P,R,S
- (2) (A) P; (B) P, Q; (C) P, R, S; (D) P, Q, R, S
- (3) (A) P,Q; (B) R,S; (C) P,Q,S; (D) P,Q,R,S
- (4) (A) P, Q, R, S; (B) R, S; (C) P, Q, R, S; (D) P, Q
- **17.** Structure of $Na_2[B_4O_5(OH)_4] \cdot 8H_2O$ contains
 - (1) Two triangular and two tetrahedral units
 - (2) Three triangular and one tetrahedral units.
 - (3) All tetrahedral units.
 - (4) All triangular units.
- **18.** Which of the following statement is incorrect:
 - (1) The free electron of ClO₃ molecule is present in d-orbital of Cl-atom
 - (2) The free electron of ${\bf CF_3}$ is present in ${\bf sp^3}$ hybrid orbital
 - (3) NO is polar
 - (4) The free electron of ClO₂ molecule is present in d-orbital of Cl-atom

- **19.** Which of the following statement is incorrect regarding the structure of XeO_2F_4 molecule :-
 - (1) Xe = O bonds are present in axial position
 - (2) All Xe-F bond lengths are identical
 - (3) FXeF angles are 90°
 - (4) Shape of the molecule is octahedral

20. Column I

Column II

- (A) ClO_2
- (P) Non planar
- (B) ClO₃
- (Q) $\mu \neq 0$
- (C) NO₂
- (R) Linear

(D) NO

- (S) planar
- (T) sp³ hybridisation
- (1) (A) Q,S; (B) P,Q,T; (C) Q,S; (D) Q,R,S
- (2) (A) P, Q, S; (B) P, Q, T; (C) P, Q, S; (D) Q, S
- (3) (A) Q,S; (B) P,Q,T; (C) P,Q,R,S,T; (D) P,T
- (4) (A) P, Q, R, S; (B) P, Q, S; (C) Q, S; (D) P, Q, R, S

21.

	Compound	Properties
A	B ₂ H ₆ , H ₃ ⁺	3c 2e bond
В	HNO ₃ , H ₂ SO ₄	pp bond
С	AlF ₃ , AlCl ₃	Hypovalent
D	NCl ₃ , SbCl ₃	Equal bond angles

Correct code is:

- (1) A
- (2) A, C
- (3) A, D
- (4) All
- **22.** In which of the following options all species contain X–O–X bonds in structure (X = central atom)
 - (1) $H_2S_2O_5$, S_3O_9 , $S_2O_6^{-2}$
 - (2) P_4O_{10} , P_4O_6 , $H_3P_3O_9$
 - (3) N₂O₅, N₂O, N₂O₄
 - $(4) H_4 P_2 O_7, H_4 P_2 O_6, H_4 P_2 O_5$
- **23.** Which is not correct?
 - (1) Borax : Cyclic, 2-(six member ring)
 - (2) Calgon: Cyclic, (10 member ring)
 - (3) Beryl: Cyclic silicate
 - (4) P₄O₁₀: Cyclic, four -(Six member ring)

- **24.** Which of the following reaction is nonspontaneous:-
 - (1) $2F_2 + 2H_2O \longrightarrow 4HF(aq) + O_2$
 - (2) $Cl_2 + H-OH \longrightarrow HCl + HOCl$
 - (3) $Br_2 + H-OH \longrightarrow HBr + HOBr$
 - $(4) 2I_2 + 2H_2O \longrightarrow 4HI + O_2$
- **25.** Which of the following group of molecules can act both as oxidant as well as reductant:-
 - (1) $KMnO_4$, O_3 , SO_3
 - (2) HC(O₄, HNO₃, H₂O₂
 - (3) HNO₃, SO₂, O₃
 - (4) HNO₂, SO₂, H₂O₂
- **26.** Which of the following order is not correct :-
 - (1) $CO_2 < SiO_2 < GeO_2 < SnO_2 < PbO_2$ (Oxidising nature)
 - (2) $MnO_4^- > TeO_4^- > ReO_4^-$ (Oxidising nature)
 - (3) $CH_4 < SiH_4 < GeH_4 < SnH_4 < PbH_4$ (Reducing nature)
 - (4) HOCl < HClO₂ < HClO₃ < HClO₄ (Oxidising nature)
- **27.** Which of the following halides cannot be hydrolysed?
 - (1) TeF₆
- (2) SF₆
- (3) PCl₅
- (4) PCl_a
- **28.** Which of the following is not correctly matched
 - (1) XeF_2 and $XeF_4 \Rightarrow Non polar but planar.$
 - (2) $XeF_6 \Rightarrow exists$ in solid state as XeF_5^+ and F^-
 - (3) $XeOF_4 \Rightarrow sp^3d^2$, square pyramidal shape, all identical B.L.
 - (4) $XeO_3 \Rightarrow pyramidal$, all bond angles are identical.
- **29.** S^{2} -and SO_{3}^{2-} can be distinguished by using:
 - (1) (CH₃COO)₂Pb
- (2) Na₂[Fe(CN)₅NO]
- (3) both (1) and (2)
- (4) none of these
- 30. Chromyl chloride test is given by -
 - (1) CH₂Cl
- (2) AgCl
- (3) Hg₂Cl₂
- (4) NH₄Cl

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	1	2,3	4	2	1	1	1	1	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2,4	1	1,4	4	1	1	1	1	1	1
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	1	2	2	4	4	4	2	3	3	4