VECTOR EXERCISE

- If ABCD is a parallelogram $\overrightarrow{AB} = 2\hat{i} + 4\hat{j} 5\hat{k}$ and 1. $\overrightarrow{AD} = \hat{i} + 2\hat{j} + 3\hat{k}$, then the unit vector in the direction of BD is :-
 - (1) $\frac{1}{\sqrt{69}}(\hat{i}+2\hat{j}-8\hat{k})$ (2) $\frac{1}{69}(\hat{i}+2\hat{j}-8\hat{k})$
 - (3) $\frac{1}{\sqrt{69}}(-\hat{i}-2\hat{j}+8\hat{k})$ (4) $\frac{1}{69}(-\hat{i}-2\hat{j}+8\hat{k})$
- 2. If \mathbf{a} , \mathbf{b} and \mathbf{c} are perpendicular to $\mathbf{b} + \mathbf{c}$, $\mathbf{c} + \mathbf{a}$ and $\mathbf{a} + \mathbf{b}$ respectively and if $|\mathbf{a} + \mathbf{b}| = 6$, $|\mathbf{b} + \mathbf{c}| = 8$ and $|\mathbf{c} + \mathbf{a}| = 10$ then $|\mathbf{a} + \mathbf{b} + \mathbf{c}| =$
 - (1) $5\sqrt{2}$
- (2) 50 (3) $10\sqrt{2}$
- $(4)\ 10$
- 3. The position vector of coplanar points A, B, C, D are a, b, c and d respectively, in such away that $(\mathbf{a} - \mathbf{d}).(\mathbf{b} - \mathbf{c}) = (\mathbf{b} - \mathbf{d}).(\mathbf{c} - \mathbf{a}) = 0$, then the point D of the triangle ABC is :-
 - (1) Incentre
- (2) Circumcentre
- (3) Orthocentre
- (4) None of these
- 4. Let \vec{u} and \vec{v} are unit vectors such that $\vec{u} \times \vec{v} + \vec{u} = \vec{w}$ and $\vec{w} \times \vec{u} = \vec{v}$, then the value of $[\vec{u} \ \vec{v} \ \vec{w}]$ is-
 - (1) 1

(2) -1

(3)0

- (4) None of these
- If a, b, c are the pth, qth, rth term of an A.P. 5. and $\vec{x} = (q - r)\hat{i} + (r - p)\hat{j} + (p - q)\hat{k}$ & $\vec{v} = a\hat{i} + b\hat{i} + c\hat{k}$, then -
 - (1) \vec{x} , \vec{y} are parallel vectors
 - (2) $\vec{\mathbf{x}} \times \vec{\mathbf{y}} = \hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
 - (3) $\vec{x} \cdot \vec{y} = 1$
 - (4) \vec{x} , \vec{y} are orthogonal vectors
- A straight line is given by $\vec{r} = (1+t)\hat{i} + 3t\hat{j} + (1-t)\hat{k}$ 6. where $t \in R$. If this line lies in the plane x+y+cz=d then the value of (c+d) is
 - (1)9
- (2) 1
- (4)7

- Value of $\vec{a}.\vec{a}' + \vec{b}.\vec{b}' + \vec{c}.\vec{c}'$, (where $\vec{a}', \vec{b}', \vec{c}'$ form a 7. reciprocal system of vectors with the vectors \vec{a} , \vec{b} , \vec{c})
 - (1) 1

(2) 2

(3) 3

- (4) None
- 8. If \overline{a} , \overline{b} and \overline{c} are three unit vectors then minimum value of $|\overline{a} + \overline{b}|^2 + |\overline{b} + \overline{c}|^2 + |\overline{c} + \overline{a}|^2$ is :-
 - (1) 3
- (2) 2
- (3) 1
- (4) 4
- If four vector $\overline{a}, \overline{b}, \overline{c}$ and \overline{d} are coplanar then 9 $(\overline{a} \times \overline{b}) \times (\overline{c} \times \overline{d}) :=$
 - (1)3
- (2) 1
- (3)2
- (4) None
- Vectors $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} + 6\hat{j} \hat{k}$ and $9\hat{i} \hat{j} + 3\hat{k}$ are 10.
 - (1) Linearly dependent
- (2) Linearly Independent
- (3) Parallel vector
- (4) None
- If \vec{p} and \vec{q} are two unit vectors inclined at an angle 11. α to each other then $|\vec{P} + \vec{q}| < 1$ If :-
 - (1) $\frac{2\pi}{3} < \alpha < \frac{4\pi}{3}$ (2) $\alpha < \frac{\pi}{3}$
 - $(3) \alpha > \frac{2\pi}{3} \qquad (4) \alpha = \frac{\pi}{2}$
- If three vectors $\vec{a}, \vec{b}, \vec{c}$ are such that $\vec{a} \neq 0$ and 12. $\vec{a} \times \vec{b} = 2\vec{a} \times \vec{c}$, $|\vec{a}| = |\vec{c}| = 1$, $|\vec{b}| = 4$ and the angle between \vec{b} and \vec{c} is $\cos^{-1}\frac{1}{4}$ then $\vec{b}-2\vec{c}=\lambda\vec{a}$ where λ is equal to :-
 - $(1) \pm 2$
 - $(2) \pm 4$
- (3) $\frac{1}{2}$ (4) $\frac{1}{4}$
- **13**. ABCDEF is a regular hexagon where centre O is the origin. If the position vector of A is $\hat{i} - \hat{j} + 2\hat{k}$ then \overrightarrow{BC} is equal to :-
 - (1) $\hat{i} \hat{i} + 2\hat{k}$
- (2) $-\hat{i} + \hat{i} 2\hat{k}$
- (3) $3\hat{i} + 3\hat{j} 4\hat{k}$
- (4) None of these

- A point I is the centre of a circle inscribed in a triangle ABC, then the vector sum $|\overrightarrow{BC}| \overrightarrow{IA} + |\overrightarrow{CA}| \overrightarrow{IB} + |\overrightarrow{AB}| \overrightarrow{IC}$ is :-
 - (1) Zero
- (2) $\frac{IA + IB + IC}{3}$

(3) 3

- (4) None
- **15**. If \vec{a} , \vec{b} , \vec{c} are coplanar then the value of the
 - | a.a | b.a | c.a | determinant $|\vec{b}.\vec{a}|$ $|\vec{b}.\vec{b}|$ $|\vec{b}.\vec{c}|$ is $\vec{c}.\vec{a}$ $\vec{c}.\vec{b}$ $\vec{c}.\vec{c}$
 - (1) 0
- (2) 3
- (3) 1
- (4) None
- The value of $(\vec{a} + 2\vec{b} \vec{c}) \cdot \{ (\vec{a} \vec{b}) \times (\vec{a} \vec{b} \vec{c}) \}$ is equal to :-
 - (1) $[\vec{a}\ \vec{b}\ \vec{c}]$
- (2) $2 [\vec{a} \ \vec{b} \ \vec{c}]$
- (3) $3[\vec{a}\ \vec{b}\ \vec{c}]$
- $(4) \ 4 \ [\vec{a} \ \vec{b} \ \vec{c}]$
- **17**. For any vector $\vec{\mathbf{p}}$ the value of

$$\frac{3}{2} \left\{ |\vec{P} \times \hat{i}|^2 + |\vec{P} \times \hat{j}|^2 + |\vec{P} \times \hat{k}|^2 \right\} \text{ is}$$

where $\vec{P}^2 = |\vec{P}|^2$:

- (1) \vec{P}^2 (2) $2\vec{P}^2$
- (3) $3\vec{P}^2$
- (4) $4\vec{P}^2$
- $[\vec{a}\ \vec{b}\ \hat{i}]\hat{i} + [\vec{a}\ \vec{b}\ \hat{j}]\hat{j} + [\vec{a}\ \vec{b}\ \hat{k}]\hat{k}$ is equal to :-**18**.
 - (1) $\vec{a} \times \vec{b}$
- (2) $\vec{a} + \vec{b}$
- (3) $\vec{a} \vec{b}$
- (4) $\vec{b} \times \vec{a}$
- Let \vec{u} , \vec{v} , \vec{w} be vectors such that $\vec{u} + \vec{v} + \vec{w} = \vec{0}$ **19**. If $|\vec{u}| = 3$; $|\vec{v}| = 4$ and $|\vec{w}| = 5$ then $\vec{\mathbf{u}} \cdot \vec{\mathbf{v}} + \vec{\mathbf{v}} \cdot \vec{\mathbf{w}} + \vec{\mathbf{w}} \cdot \vec{\mathbf{u}}$ is :-

 - (1) 47 (2) -25
- (3) 0
- (4)25
- If \vec{a} , \vec{b} , \vec{c} are coplanar then -**20**.

 $(\vec{a} + \vec{b} + \vec{c})$. $((\vec{a} + \vec{b}) \times (\vec{a} + \vec{c}))$ equals –

(1) 0

- $(2)[\vec{a}, \vec{b}, \vec{c}]$
- (3) $2[\vec{a}, \vec{b}, \vec{c}]$
- $(4) [\vec{a}, \vec{b}, \vec{c}]$

- **21.** If vectors \vec{c} , $\vec{a} = x\hat{i} + y\hat{j} + z\hat{k}$ and $\vec{b} = \hat{j}$ are such that \vec{a} , \vec{c} , \vec{b} form a right handed system then \vec{c} is:-
 - (1) $z\hat{i} x\hat{k}$

(3) vi

- $(4) -z\hat{i} + x\hat{k}$
- 22. The vector \vec{a} lies in the plane of vectors \vec{b} and \vec{c} which of the following is correct:-

 - $(1) \vec{a} \cdot (\vec{b} \times \vec{c}) = 0 \qquad (2) \vec{a} \cdot \vec{b} \times \vec{c} = 1$
 - (3) $\vec{a} \cdot \vec{b} \times \vec{c} = -1$ (4) $\vec{a} \cdot \vec{b} \times \vec{c} = 3$
- Area of parllologram whose adjacent sides are 23. $\hat{i} + 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ is :-
 - $(1) 5\sqrt{2}$
- $(2) 8\sqrt{3}$

(3)6

- (4) None
- 24. Position vectors of the four angular points of a tetrahedron ABCD are A(3, -2, 1); B(3, 1, 5); C(4, 0, 3) and D(1, 0, 0). Acute angle between the plane faces ADC and ABC is

 - (1) $\tan^{-1}(5/2)$ (2) $\cos^{-1}(2/5)$
 - (3) $\csc^{-1}(5/2)$ (4) $\cot^{-1}(3/2)$
- 25. The volume of the tetrahedron formed by the coterminus edges \vec{a} , \vec{b} , \vec{c} is 3. Then the volume of the parallelepiped formed by the coterminus edges $\vec{a} + \vec{b}$, $\vec{b} + \vec{c}$, $\vec{c} + \vec{a}$ is
 - (1)6

(2)18

(3)36

- (4)9
- 26. \vec{a} , \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 respectively. If $\vec{a} \times (\vec{a} \times \vec{c}) + \vec{b} = 0$, then

the acute angle between $\vec{a} \ \& \ \vec{c}$ is :

(1) $\pi/6$

(2) $\pi/4$

- (3) $\pi/3$
- $(4) 5\pi/12$

- A vector of magnitude $5\sqrt{5}$ coplanar with vectors $\hat{i} + 2\hat{j} \ \& \ \hat{j} + 2\hat{k}$ and the perpendicular vector $2\hat{i}+\hat{j}+2\hat{k}$ is
 - $(1) \pm 5 \left(5\hat{i} + 6\hat{j} 8\hat{k} \right)$
 - $(2) \pm \sqrt{5} \left(\hat{5i} + 6\hat{i} 8\hat{k} \right)$
 - (3) $\pm 5\sqrt{5} \left(5\hat{i} + 6\hat{j} 8\hat{k} \right)$
 - $(4) \pm (5\hat{i} + 6\hat{j} 8\hat{k})$
- Let $\vec{\alpha} = 2\hat{i} + 3\hat{j} \hat{k}$ and $\vec{\beta} = \hat{i} + \hat{j}$. If $\vec{\gamma}$ is a unit vector, then the maximum value of $\begin{bmatrix} \vec{\alpha} \times \vec{\beta} & \vec{\beta} \times \vec{\gamma} & \vec{\gamma} \times \vec{\alpha} \end{bmatrix}$ is equal to
- (3)4
- If the vectors $\vec{a}=3\hat{i}+\hat{j}-2\hat{k}$, $\vec{b}=-\hat{i}+3\hat{j}+4\hat{k}$ 29. & $\vec{c} = 4\hat{i} - 2\hat{j} - 6\hat{k}$ constitute the sides of a Δ ABC, then the length of the median bisecting the vector \vec{c} is
- (1) $\sqrt{2}$ (2) $\sqrt{14}$ (3) $\sqrt{74}$ (4) $\sqrt{6}$

If the vector $6\hat{i} - 3\hat{j} - 6\hat{k}$ is decomposed into **30**. vectors parallel and perpendicular to the vector $\hat{i} + \hat{j} + \hat{k}$ then the vectors are :

(1)
$$-(\hat{i} + \hat{j} + \hat{k}) & 7\hat{i} - 2\hat{j} - 5\hat{k}$$

(2)
$$-2(\hat{i} + \hat{j} + \hat{k}) & 8\hat{i} - \hat{j} - 4\hat{k}$$

$$(3) + 2(\hat{i} + \hat{j} + \hat{k}) & 4\hat{i} - 5\hat{j} - 8\hat{k}$$

- (4) none
- 31. Given three vectors \vec{a} , \vec{b} & \vec{c} each two of which are non collinear. Further if $(\vec{a} + \vec{b})$ is collinear with \vec{c} , $(\vec{b} + \vec{c})$ is collinear with \vec{a} &

 $|\vec{a}| = |\vec{b}| = |\vec{c}| = \sqrt{2}$. Then the value of $\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{a}$:

(1) is 3

(2) is -3

(3) is 0

(4) cannot be evaluated

					ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	3	4	3	1	4	1	3	1	4	2	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	1	2	2	1	1	3	3	1	2	1	
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.	1	1	2	1	3	1	4	2	4	1	
Que.	31										
<u> </u>	0										