RELATION-EXERCISE

- 1. In the set $A = \{1, 2, 3, 4, 5\}$, a relation R is defined by $R = \{(x, y) : x, y \in A \text{ and } x < y\}$. Then R is-
 - (1) Reflexive
- (2) Symmetric
- (3) Transitive
- (4) None of these
- **2.** For real numbers x and y, we write $x R y \Leftrightarrow x y + \sqrt{2}$ is an irrational number. Then the relation R is-
 - (1) Reflexive
- (2) Symmetric
- (3) Transitive
- (4) none of these
- 3. Let L denote the set of all straight lines in a plane. Let a relation R be defined by α R $\beta \Leftrightarrow \alpha \perp \beta$, α , $\beta \in L$. Then R is-
 - (1) Reflexive
- (2) Symmetric
- (3) Transitive
- (4) none of these
- **4.** Let R be a relation defined in the set of real numbers by a R b \Leftrightarrow 1 + ab > 0. Then R is-
 - (1) Equivalence relation
- (2) Transitive
- (3) Symmetric
- (4) Anti-symmetric
- 5. Two points P and Q in a plane are related if OP = OQ, where O is a fixed point. This relation is-
 - (1) Reflexive but symmetric
 - (2) Symmetric but not transitive
 - (3) An equivalence relation
 - (4) none of these
- **6.** Let A = {2, 3, 4, 5} and let R = {(2, 2), (3, 3), (4, 4), (5, 5), (2, 3), (3, 2), (3, 5), (5, 3)} be a relation in A. Then R is-
 - (1) Reflexive and transitive
 - (2) Reflexive and symmetric
 - (3) Reflexive and antisymmetric
 - (4) none of these
- 7. Let L be the set of all straight lines in the Euclidean plane. Two lines ℓ_1 and ℓ_2 are said to be related by the relation R if ℓ_1 is parallel to ℓ_2 . Then the relation R is-
 - (1) Reflexive
- (2) Symmetric
- (3) Transitive
- (4) Equivalence

- **8.** Let $A = \{p, q, r\}$. Which of the following is an equivalence relation in A?
 - (1) $R_1 = \{(p, q), (q, r), (p, r), (p, p)\}$
 - (2) $R_2 = \{(r, q) (r, p), (r, r), (q, q)\}$
 - (3) $R_3 = \{(p, p), (q, q), (r, r), (p, q)\}$
 - (4) none of these
- **9.** The relation R defined in A = $\{1, 2, 3\}$ by a R b if $|a^2 b^2| \le 5$. Which of the following is false-
 - $(1)R = \{(1, 1), (2, 2), (3, 3), (2, 1), (1, 2), (2, 3), (3, 2)\}$
 - (2) $R^{-1} = R$
 - (3) Domain of $R = \{1, 2, 3\}$
 - (4) Range of $R = \{5\}$
- 10. Let N denote the set of all natural numbers and R be the relation on $N \times N$ defined by (a, b) R (c, d) if ad (b + c) = bc(a + d), then R is-
 - (1) Symmetric only
 - (2) Reflexive only
 - (3) Transitive only
 - (4) An equivalence relation
- **11.** Let $P = \{(x, y) : x^2 + y^2 = 1, x, y \in R\}$ Then P is-
 - (1) reflexive
- (2) symmetric
- (3) transitive
- (4) anti-symmetric
- **12.** If R be a relation '<' from A = $\{1, 2, 3, 4\}$ to B = $\{1, 3, 5\}$ i.e. $(a, b) \in R$ iff a < b, then ROR^{-1} is-
 - $(1) \{(1, 3), (1, 5), (2, 3), (2, 5), (3, 5), (4, 5)\}$
 - $(2) \{(3, 1), (5, 1), (3, 2), (5, 2), (5, 3), (5, 4)\}$
 - $(3) \{(3, 3), (3, 5), (5, 3), (5, 5)\}$
 - $(4) \{(3, 3), (3, 4), (4, 5)\}$
- **13.** Let R and S be two equivalence relations in a set A. Then-
 - (1) $R \cup S$ is an equivalence relation in A
 - (2) $R \cap S$ is an equivalence relation in A
 - (3) R S is an equivalence relation in A
 - (4) none of these

14. Statement-1: In the set $N \times N$ consider relation R defined as $(a, b) R (c, d) \Leftrightarrow ad = bc$; then R is equivalence relation.

Statement–2: Relation R is reflexine, symmetric & transitive.

- (1) Statement–1 is true, Statement–2 is true; Statement–2 is not the correct explanation of Statement–1
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement–1 is true, Statement–2 is true; Statement–2 is the correct explanation of Statement–1.
- **15. Statement-1**: Let $A = \{1, 2, 3\}, B = \{a, b, c, d\},$

$$C = \{\alpha, \beta, \gamma\}$$

 $R = \{(1, a) (1, c) (2, d)\}$ and

$$S = \{(a, \alpha) (a, \gamma) (c, \beta)\}\$$

then $SOR = \{(1, \alpha) (1, \gamma) (1, \beta)\}\$

Statement-2: $R \subseteq A \times B$, $S \subseteq B \times C$ and $SOR \subseteq A \times C$.

- (1) Statement–1 is true, Statement–2 is true; Statement–2 is not the correct explanation of Statement–1
- (2) Statement–1 is false, Statement–2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement–1 is true, Statement–2 is true; Statement–2 is the correct explanation of Statement–1.
- **16.** Statement-1 : Let $a,b \in I$

 $R_1 \rightarrow aR_1b \Leftrightarrow a+b$ is an even integer then R_1 is an equivalence relation.

 $R_2 \rightarrow aR_2b \Leftrightarrow a-b$ is an even integer, then R_2 is an equivalence relation.

 $R_3 \rightarrow aR_3b \Leftrightarrow a < b$, then R_3 is not an equivalence relation.

Statement-2: A relation which is reflexive, symmetric and transitive is called an equivalence relation.

- (1) Statement-1 is true, Statement-2 is true; Statement-2 is not the correct explanation of Statement-1
- (2) Statement-1 is false, Statement-2 is true
- (3) Statement-1 is true, Statement-2 is false
- (4) Statement–1 is true, Statement–2 is true; Statement–2 is the correct explanation of Statement–1.

- **17.** Let $R = \{(1, 3), (4, 2), (2, 4), (2, 3), (3, 1)\}$ be a relation on the set $A = \{1, 2, 3, 4\}$. The relation R is-
 - (1) transitive
 - (2) not symmetric
 - (3) reflexive
 - (4) a function
- **18.** Let $R = \{(3, 3), (6, 6), (9, 9), (12, 12), (6, 12), (3, 9), (3, 12), (3, 6)\}$ be relation on the set $A = \{3, 6, 9, 12\}$. The relation is- **[AIEEE 2005]**
 - (1) reflexive and transitive only
 - (2) reflexive only
 - (3) an equilvalence relation
 - (4) reflexive and symmetric only
- **19.** Let W denote the words in the English dictionary. Define the relation R by : $R = \{(x, y) \in W \times W : \text{the words } x \text{ and } y \text{ have at least one letter in common} \}$. Then R is-
 - (1) reflexive, symmetric and not transitive
 - (2) reflexive, symmetric and transitive
 - (3) reflexive, not symmetric and transtive
 - (4) not reflexive, symmetric and transitive
- 20. Consider the following relations:-

 $R = \{(x, y) : x, y \text{ are real numbers and } x = wy \text{ for }$ some rational number w\};

$$S = \left\{ \left(\frac{m}{n}, \frac{p}{q} \right) : m, n, p \text{ and } q \text{ are integers such that} \right.$$

$$n, \ q \neq 0 \text{ and } qm = pn \right\}.$$

Then:

[AIEEE - 2010]

- (1) R is an equivalence relation but S is not an equivalence relation
- (2) Neither R nor S is an equivalence relation
- (3) S is an equivalence relation but R is not an equivalence relation
- (4) R and S both are equivalence relations

21. Let R = {(3, 3), (5, 5), (9, 9), (12, 12), (5, 12), (3, 9), (3, 12), (3, 5)} be a relation on the set A = {3, 5, 9, 12}. Then, R is :-

[JEE-Main 2013 (Online)]

- (1) reflexive, transitive but not symmetric.
- (2) symmetric, transitive but not reflexive.
- (3) an equivalence relation
- (4) reflexive, symmetric but not transitive
- **22.** Let $R = \{(x, y) : x, y \in N \text{ and } x^2 4xy + 3y^2 = 0\}$, where N is the set of all natural numbers. Then the relation R is : [JEE-Main 2013 (Online)]
 - (1) reflexive and transitive.
 - (2) symmetric and transitive
 - (3) reflexive but neither symmetric nor transitive
 - (4) reflexive and symmetric.
- 23. For any two real numbers a and b, we define aRb if and only if sin²a + cos²b = 1. The relation R is:-
 - (1) Reflexive but not symmetric
 - (2) Symmetric but not transitive
 - (3) Transitive but not reflexive
 - (4) An equivalence relation

24. Consider the following two binary relations on the set $A=\{a,b,c\}$:

 $R_1 = \{(c,a),(b,b),(a,c),(c,c),(b,c),(a,a)\}$ and

 $R_2 = \{(a,b),(b,a),(c,c),(c,a),(a,a),(b,b),(a,c)\}.$ Then

[JEE-Main 2018 (Online)]

- (1) R_1 is not symmetric but it is transitive.
- (2) both R_1 and R_2 are transitive
- (3) R_2 is symmetric but it is not transitive
- (4) both R_1 and R_2 are not symmetric
- **25.** Let N denote the set of all natural numbers. Define two binary relations on N as

$$R_1 = \{(x, y) \in N \times N : 2x + y = 10\}$$

and $R_2 = \{(x,y) \in N \times N : x + 2y = 10\}$. Then :

[JEE-Main 2018 (Online)]

- (1) Both R_1 and R_2 are symmetric relations
- (2) Range of R_1 is $\{2, 4, 8\}$
- (3) Both R_1 and R_2 are transitive relations.
- (4) Range of R_2 is $\{1,2,3,4\}$

ANSWER KE							Exercise			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	1	2	3	3	2	4	4	4	4
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	2	4	4	4	2	1	1	3
Que.	21	22	23	24	25					
Ans.	1	3	4	3	4					