MATHEMATICAL REASONING - EXERCISE

- 1. The inverse of the statement $(p \land \neg q) \rightarrow r$ is-
 - $(1) \sim (p \vee \sim q) \rightarrow \sim r$
- (2) $(\sim p \land q) \rightarrow \sim r$
- (3) $(\sim p \lor q) \rightarrow \sim r$
- (4) None of these
- 2. $(-p \lor -q)$ is logically equivalent to-
 - $(1) p \wedge q$

 $(2) \sim p \rightarrow q$

- (3) $p \rightarrow \sim q$
- $(4) \sim p \rightarrow \sim q$
- 3. The equivalent statement of $(p \leftrightarrow q)$ is-
 - $(1) (p \land q) \lor (p \lor q)$
- $(2) (p \rightarrow q) \lor (q \rightarrow p)$
- $(3) (\sim p \lor q) \lor (p \lor \sim q) \qquad (4) (\sim p \lor q) \land (p \lor \sim q)$
- 4. If the compound statement $p \rightarrow (\sim p \lor q)$ is false then the truth value of p and q are respectively-
 - (1) T, T

(2) T, F

(3) F, T

- (4) F, F
- 5. The statement $(p \rightarrow \sim p) \land (\sim p \rightarrow p)$ is-
 - (1) a tautology
 - (2) a contradiction
 - (3) neither a tautology nor a contradiction
 - (4) None of these
- 6. Negation of the statement $(p \land r) \rightarrow (r \lor q)$ is-
 - $(1) \sim (p \wedge r) \rightarrow \sim (r \vee q) \qquad (2) (\sim p \vee \sim r) \vee (r \vee q)$
 - (3) $(p \wedge r) \wedge (r \wedge q)$
- $(4) (p \wedge r) \wedge (\sim r \wedge \sim q)$
- **7**. Which of the following is correct-
 - (1) $(\sim p \vee \sim q) \equiv (p \wedge q)$
 - (2) $(p \rightarrow q) \equiv (\sim q \rightarrow \sim p)$
 - $(3) \sim (p \rightarrow \sim q) \equiv (p \land \sim q)$
 - $(4) \sim (p \leftrightarrow q) \equiv (p \rightarrow q) \vee (q \rightarrow p)$
- 8. The contrapositive of p \rightarrow (\sim q \rightarrow \sim r) is-
 - $(1) (\sim q \wedge r) \rightarrow \sim p$
- $(2) (q \rightarrow r) \rightarrow \sim p$
- (3) $(q \lor \sim r) \rightarrow \sim p$
- (4) None of these
- The converse of $p \rightarrow (q \rightarrow r)$ is-9.
 - (1) $(q \land \sim r) \lor p$
- $(2) (\sim q \vee r) \vee p$
- $(3) (q \land \sim r) \land \sim p$
- $(4) (q \land \sim r) \land p$
- **10.** If p and q are two statement then $(p \leftrightarrow \neg q)$ is true when-
 - (1) p and q both are true
 - (2) p and q both are false
 - (3) p is false and q is true
 - (4) None of these

- 11. Statement $(p \land q) \rightarrow p$ is-
 - (1) a tautology
- (2) a contradiction
- (3) neither (1) nor (2)
- (4) None of these
- 12 If statements p, q, r have truth values T, F, T respectively then which of the following statement is true-
 - $(1) (p \rightarrow q) \land r$
- (2) $(p \rightarrow q) \vee \sim r$
- (3) $(p \land q) \lor (q \land r)$
- $(4) (p \rightarrow q) \rightarrow r$
- 13. If statement $p \rightarrow (q \lor r)$ is true then the truth values of statements p, q, r respectively-
 - (1) T, F, T

(2) F. T. F

(3) F, F, F

- (4) All of these
- **14.** Which of the following statement is a contradiction-
 - $(1) (p \land q) \land (\sim (p \lor q))$
- (2) $p \vee (\sim p \wedge q)$
- $(3) (p \rightarrow q) \rightarrow p$
- $(4) \sim p \vee \sim q$
- **15**. The negative of the statement "If a number is divisible by 15 then it is divisible by 5 or 3"
 - (1) If a number is divisible by 15 then it is not divisible by 5 and 3
 - (2) A number is divisible by 15 and it is not divisible by 5 or 3
 - (3) A number is divisible by 15 or it is not divisible by 5 and 3
 - (4) A number is divisible by 15 and it is not divisible by 5 and 3
- For any three simple statement p, q, r the statement **16**. $(p \land q) \lor (q \land r)$ is true when-
 - (1) p and r true and q is false
 - (2) p and r false and q is true
 - (3) p, q, r all are false
 - (4) g and r true and p is false
- **17**. Which of the following statement is a tautology-
 - (1) $(\sim p \vee \sim q) \vee (p \vee \sim q)$
 - (2) $(\sim p \vee \sim q) \wedge (p \vee \sim q)$
 - $(3) \sim p \wedge (\sim p \vee \sim q)$
 - $(4) \sim a \wedge (\sim p \vee \sim a)$
- 18. Which of the following statement is a contradiction-
 - $(1) (\sim p \vee \sim q) \vee (p \vee \sim q)$
- (2) $(p \rightarrow q) \lor (p \land \sim q)$
- $(3) (\sim p \land q) \land (\sim q)$
- (4) $(\sim p \land q) \lor (\sim q)$

- **19.** The negation of the statement q \vee (p \wedge \sim r) is equivalent to-
 - $(1) \sim q \wedge (p \rightarrow r)$
- (2) $\sim q \land \sim (p \rightarrow r)$
- (3) $\sim q \land (\sim p \land r)$
- (4) None of these
- **20.** The statement \sim (p \rightarrow q) \leftrightarrow (\sim p \vee \sim q) is-
 - (1) a tautology
 - (2) a contradiction
 - (3) neither a tautology nor a contradiction
 - (4) None of these
- **21.** Which of the following is equivalent to $(p \land q)$
 - (1) $p \rightarrow \sim q$

- (2) $\sim (\sim p \land \sim q)$
- $(3) \sim (p \rightarrow \sim q)$
- (4) None of these
- **22.** If p is any statement, t and c are a tautology and a contradiction respectively then which of the following is not correct-
 - (1) $p \wedge t \equiv p$
- (2) $p \wedge c \equiv c$

(3) $p \lor t \equiv c$

- (4) $p \lor c \equiv p$
- **23.** If p is any statement, t is a tautology and c is a contradiction then which fo the following is not correct-
 - (1) $p \land (\sim c) \equiv p$
 - (2) $p \vee (\sim t) \equiv p$
 - (3) $t \lor c \equiv p \lor t$
 - (4) $(p \land t) \lor (p \lor c) \equiv (t \land c)$
- **24.** If p, q, r are simple statement with truth values T, F, T respectively then the truth value of

$$((\sim p \lor q) \land \sim r) \rightarrow p \text{ is-}$$

(1) True

- (2) False
- (3) True if r is false
- (4) True if q is true

- **25.** Which of the following is wrong-
 - (1) $p \vee \sim p$ is a tautology
 - $(2) \sim (\sim p) \leftrightarrow p$ is a tautology
 - (3) $p \land \sim p$ is a contradiction
 - (4) $((p \land p) \rightarrow q) \rightarrow p$ is a tautology
- **26.** The statement "If $2^2 = 5$ then I get first class" is logically equivalent to-
 - (1) $2^2 = 5$ and I donot get first class
 - (2) $2^2 = 5$ or I do not get first class
 - (3) $2^2 \neq 5$ or I get first class
 - (4) None of these
- **27.** If statement $(p \lor \sim r) \to (q \land r)$ is false and statement q is true then statement p is-
 - (1) true
 - (2) false
 - (3) may be true or false
 - (4) None of these
- **28.** Which of the following statement are not logically equivalent-
 - (1) \sim (p $\vee \sim$ q) and (\sim p \wedge q)
 - (2) \sim (p \rightarrow q) and (p \wedge \sim q)
 - (3) $(p \rightarrow q)$ and $(\sim q \rightarrow \sim p)$
 - (4) $(p \rightarrow q)$ and $(\sim p \land q)$
- **29.** Either p or q is equivalent to :-
 - $(1) p \vee q$

- (2) $(p \land \sim q) \lor (q \land \sim p)$
- (3) $(p \lor \sim q) \land (q \lor \sim p)$
- (4) None
- **30.** Neither p nor q is equivalent to :-
 - $(1) \sim p \wedge \sim q$

- (2) \sim (p \wedge q)
- $(3) (\sim p \vee q) \wedge (p \vee \sim q)$
- (4) None

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	3	4	2	2	4	2	1	1	3
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	1	4	4	1	4	4	1	3	1	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	4	1	4	3	3	4	2	1