MOLE CONCEPT & GASEOUS STATE

EXERCISE-I

- 1. Which of the following contain largest number of carbon atoms?
 - (1) 15 gm ethane, C_2H_6
 - (2) 40.2 gm sodium oxalate, $Na_2C_2O_4$
 - (3) 72 gm glucose, $C_6H_{12}O_6$
 - (4) 35 gm pentene, C_5H_{10}
- The percentage by mole of NO₂ in a mixture of NO₂(g) 2. and NO(g) having average molecular mass 34 is:
 - (1) 25%
- (2) 20%
- (3) 40%
- 3. Volume of O₂ obtained at 2 atm & 546K, by the complete decomposition of 8.5 g NaNO₃ is $2NaNO_3 \rightarrow 2NaNO_2 + O_2$ (1) 2.24 lit (2) 1.12 lit (3) 0.84 lit (4) 0.56 lit
- 4. A metal carbonate decomposes according to following reaction

$$M_2CO_3(s) \longrightarrow M_2O(s) + CO_2(g)$$

Percentage loss in mass on complete decomposition of $M_2CO_3(s)$

(Atomic mass of M = 102)

- (1) $\frac{100}{3}$ % (2) $\frac{50}{3}$ % (3) $\frac{25}{3}$ % (4) 15%
- 5. 25.4 gm of iodine and 14.2 gm of chlorine are made to react completely to yield a mixture of ICl and ICl₃. Ratio of moles of ICl & ICl₃ formed is (Atomic mass : I = 127, Cl = 35.5)
 - (1) 1 : 1
- (2) 1 : 2
- (3) 1 : 3
- (4) 2 : 3
- 6. 100 ml of PH₃ decomposes according to given reaction.

$$PH_3(g) \longrightarrow P(s) + 3/2 H_2(g)$$

The change in volume of the gas is :-

- (1) 50 ml increase
- (2) 500 ml decrease
- (3) 900 ml decrease
- (4) 150 ml increase
- 7. 44 g of a sample of organic compound on complete combustion gives 88 g CO₂ and 36 g of H₂O. The molecular formula of the compound may be :-
 - $(1) C_4 H_6$
- $(2) C_2 H_6 O$ $(3) C_2 H_4 O$ $(4) C_3 H_6 O$
- 8. A metal oxide has the fomula X_2O_3 . It can be reduced by hydrogen to give free metal and water. 0.156 gm of metal oxide requires 6 mg of hydrogen for complete reduction. The atomic mass of metal in amu is :-
 - (1) 15.6
- (2) 156
- (3) 108
- (4)54
- 9. Two oxides of a metal contain 22.22% and 30% oxygen by mass respectively. If the formula of the first oxide is MO, then the formula of the second oxide is:-
 - $(1) MO_{o}$
- $(2) M_{2}O_{3}$ $(3) M_{2}O$
- $(4) M_{o}O_{E}$

- 10. In the reaction $4A + 2B + 3C \longrightarrow A_4B_2C_3$, what will be the number of moles of product formed, starting from 1 mol of A, 0.6 mol of B and 0.72 mol of C:-
 - (1) 2.32
- (2) 0.24
- (3) 0.3
- (4) 0.25
- Two isotopes of an element Q are Q⁹⁷ (23.4% 11. abundance) and Q94 (76.6% abundance). Q97 is 8.082 times heavier than C^{12} and Q^{94} is 7.833times heavier than C12. What is the average atomic weight of the element Q?
 - (1) 94.702 (2) 78.913 (3) 96.298 (4) 94.695
- 12. 12 g of Mg was burnt in a closed vessel containing 32 g oxygen. Remaining unreacted gm-molecules of O₂ will be :-
 - (1) 0.5
- (2) 0.75
- (3) 1
- (4) 0.25
- 13. The total number of electrons present in 9 mL of water (density of water is 1 gmL⁻¹):-
 - $(1) 3.01 \times 10^{23}$
- $(2) 3.01 \times 10^{22}$
- $(3)\ 3.01\times 10^{24}$
- $(4)\ 3.01\times 10^{25}$
- From 200 mg of CO₂, 10²¹ molecules are removed, 14. How many moles of CO₂ are left?
 - (1) 126.9×10^{-1}
- $(2) 2.88 \times 10^{-3}$
- (3) 7.31×10^{-3}
- $(4) 4.4 \times 10^{-3}$
- On heating $10 \, \text{g}$ of CaCO_3 , $5.6 \, \text{g}$ CaO is formed. **15**. Moles of CO₂ obtained in this reaction will be:-
 - (1) 2.2
- (2) 4.4
- (3) 0.1
- (4) 0.2
- 16. 40 gm of a carbonate of an alkali metal or alkaline earth metal containing some inert impurities was made to react with excess HCl solution. The liberated CO₂ occupied 12.315 lit. at 1 atm & 300 K. The correct option is
 - (1) Mass of impurity is 1 gm and metal is Be
 - (2) Mass of impurity is 3 gm and metal is Li
 - (3) Mass of impurity is 5 gm and metal is Be
 - (4) Mass of impurity is 2 gm and metal is Mg
- 17. 1 mole of H₂SO₄ will not exactly neutralise :
 - (1) 2 mole of ammonia (2) 1 mole of Ba(OH)₂
 - (3) 0.5 mole of Ca(OH)₂ (4) 2 mole of KOH
- 18. 12 g of Mg was burnt in a closed vessel containing 32 g oxygen. Which of the following is incorrect.
 - (1) 2 gm of Mg will be left unburnt.
 - (2) 0.75 gm-molecule of O_2 will be left unreacted.
 - (3) 20 gm of MgO will be formed.
 - (4) The mixture at the end will weight 44 g.

MOLE CONCEPT & GASEOUS STATE

19. 50 gm of CaCO₃ is allowed to react with 68.6 gm of H₃PO₄ then select the incorrect option-

 $3CaCO_3 + 2H_3PO_4 \rightarrow Ca_3(PO_4)_2 + 3H_2O + 3CO_2$

- (1) 51.67 gm salt is formed
- (2) Amount of unreacted reagent = 35.93 gm
- (3) $n_{CO_2} = 0.5 \text{ moles}$
- (4) 0.7 mole CO₂ is evolved
- 20. Select the correct statement(s) for (NH₄)₃PO₄.
 - (1) Ratio of number of oxygen atoms to number of hydrogen atoms is 1:3
 - (2) Ratio of number of cations to number of anions is 3:2
 - (3) Ratio of number of gm-atoms of nitrogen to gm-atoms of oxygen is 3:2
 - (4) Total number of atoms in one mole of $(NH_4)_3PO_4$ is 20.
- 21. At STP, the order of root mean square speed of molecules H_2 , N_2 , O_2 and HBr is :
 - (1) $H_2 > N_2 > O_2 > HBr$ (2) $HBr > O_2 > N_2 > H_2$
 - (3) HBr > $H_2 > O_2 > N_2$ (4) $N_2 > O_2 > H_2 > HBr$
- Most probable speed, average speed and RMS 22. speed are related as:
 - (1) 1 : 1.128 : 1.224(2) 1: 1.128: 1.424
 - (4) 1 : 1.428 : 1.442 (3) 1 : 2.128 : 1.224
- If the average velocity of N₂ molecules is 0.3 m/sec. **23**. at 27°C, then the velocity of 0.6 m/sec will take place at:
 - (3) 1000 K (4) 1200 K (1) 273 K(2) 927 K
- 24. The total KE of an ideal monoatomic gas at 27°C is (1) 900 cal (2) 1800 cal (3) 300 cal (4) None
- **25**. The correct expression for the van der Waals' equation of state is:
 - $(1)\left(P + \frac{a}{n^2V^2}\right)(V nb) = nRT$
 - $(2) \left(P + \frac{an^2}{V^2} \right) (V nb) = \Delta nRT$
 - (3) $\left(P + \frac{an^2}{V^2}\right)(V b) = nRT$
 - $(4) \left(P + \frac{an^2}{V^2} \right) (V nb) = nRT$

26. At relatively high pressure, van der Waals' equation reduces to:

(1)
$$PV_m = RT$$

$$(2) PV_m = RT + \frac{a}{V_m}$$

(3)
$$PV_m = RT + Pb$$

(3)
$$PV_m = RT + Pb$$
 (4) $PV_m = RT - \frac{a}{V_m^2}$

27. Observe the following Z vs P graph.

The missing gas in the above graph can be:

(1) He

- (2) Ar
- $(3) C_5 H_{12}$
- (4) All are correct
- 28. The values of van der Waals' constant 'a' for the gases O_2 , N_2 , NH_3 and CH_4 are 1.360, 1.390, 4.170 and 2.253 L atm mol⁻² respectively. The gas which can most easily be liquefied is:
 - (1) O₂
- (2) N_{2}
- (3) NH₂
- (4) CH₄
- 29. A gas can be liquefied by:
 - (1) Cooling
- (2) Compressing
- (3) Both (1) and (2)
- (4) None
- 30. Which set of conditions represents easiest way to liquefy a gas:
 - (1) Low temperature and high pressure
 - (2) High temperature and low pressure
 - (3) Low temperature and low pressure
 - (4) High temperature and high pressure

ANSWER KEY								Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10	
Ans.	4	1	2	2	1	1	3	4	2	2	
Que.	11	12	13	14	15	16	17	18	19	20	
Ans.	4	2	3	2	3	2	3	1	4	1	
Que.	21	22	23	24	25	26	27	28	29	30	
Ans.	1	1	4	1	4	3	3	3	3	1	