- 1. In a chemical equilibrium, the rate constant for the backward reaction is 2×10^{-4} and the equilibrium constant is 1.5. The rate constant for the forward reaction is:-
 - (1) 2×10^{-3}
- (2) 5×10^{-4}
- (3) 3×10^{-4}
- (4) 9.0×10^{-4}
- **2.** For the reaction

 $CuSO_4.5H_2O_{(s)}$ $CuSO_4.3H_2O_{(s)}+2H_2O_{(g)}$ Which one is correct representation :-

- (1) $K_p = (P_{(H_2O)})^2$
- (2) $K_c = [H_2O]^2$
- (3) $K_p = K_c(RT)^2$
- (4) All
- 3. $\log \frac{K_p}{K_c} + \log RT = 0$ is true relationship for the following reaction:-
 - (1) $PCl_5 \rightleftharpoons PCl_3 + Cl_2$
 - $(2) 2SO₂ + O₂ \Longrightarrow 2SO₃$
 - (3) $N_2 + 3H_2 = 2NH_3$
 - (4) (2) and (3) both
- **4.** For any reversible reaction if concentration of reactants increases then effect on equilibrium constant:-
 - (1) Depends on amount of concentration
 - (2) Unchange
 - (3) Decrease
 - (4) Increase
- 5. Sulfide ion in alkaline solution reacts with solid sulfur to form polysulfide ions having formulas S_2^{2-} , S_3^{2-} , S_4^{2-} and so on. The equilibrium constant for the formation of S_2^{2-} is 12 (K_1) & for the formation of S_3^{2-} is 132 (K_2), both from S and S^{2-} . What is the equilibrium constant for the formation of S_3^{2-} from S_2^{2-} and S?
 - (1) 11

(2) 12

(3) 132

- (4) None of these
- **6.** What should be the value of K_c for the reaction $2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_{3(g)}$, if the amount are $SO_3 = 48 \text{ g}$, $SO_2 = 12.8 \text{ g}$ and $O_2 = 9.6 \text{ g}$ at equilibrium and the volume of the container is one litre?
 - (1)64
- (2) 30
- (3) 42
- (4) 8.5

- 7. For the reaction A + 2B \(\subseteq 2C + D\), initial concentration of A is a and that of B is 1.5 times that of A. Concentration of A and D are same at equilibrium. What should be the concentration of B at equilibrium?
 - (1) $\frac{a}{4}$

(2) $\frac{a}{2}$

(3) $\frac{3a}{4}$

- (4) All of the above.
- **8.** The degree of dissociation of SO_3 is α at equilibrium pressure p^0 .

$$K_p$$
 for $2SO_3(g) \Longrightarrow 2SO_2(g) + O_2(g)$

$$(1) \; \frac{p^0 \alpha^3}{2(1-\alpha)^3}$$

(2)
$$\frac{p^0 \alpha^3}{(2+\alpha)(1-\alpha)^2}$$

- (3) $\frac{p^0 \alpha^2}{2(1-\alpha)^2}$
- (4) None of these
- **9.** The equilibrium constant for the reaction

$$A(g) + 2B(g) \rightleftharpoons C(g)$$

is $0.25 \text{ dm}^6\text{mol}^{-2}$. In a volume of 5 dm^3 , what amount of A must be mixed with 4 mol of B to yield 1 mol of C at equilibrium.

- (1) 3 moles
- (2) 24 moles
- (3) 26 moles
- (4) None of these
- **10.** The equilibrium constant K_C for the reaction,

$$A(g) + 2B(g) \rightleftharpoons 3C(g)$$
 is 2×10^{-3}

What would be the equilibrium partial pressure of gas C if initial pressure of gas A & B are 1 & 2 atm respectively.

- (1) 0.0625 atm
- (2) 0.1875 atm
- (3) 0.21 atm
- (4) None of these
- **11.** At 675 K, $H_2(g)$ and $CO_2(g)$ react to form CO(g) and $H_2O(g)$, K_p for the reaction is 0.16.

If a mixture of 0.25 mole of $\rm\,H_2(g)$ and 0.25 mol of $\rm\,CO_2$ is heated at 675 K, mole % of CO(g) in equilibrium mixture is :

- (1) 7.14
- (2) 14.28
- (3) 28.57
- (4) 33.33

CHEMICAL EQUILIBRIUM

12. The equilibrium constant K_p (in atm) for the reaction is 9 at 7 atm and 300 K.

$$A_2(g) \rightleftharpoons B_2(g) + C_2(g)$$

Calculate the average molar mass (in gm/mol) of an equilibrium mixture.

Given : Molar mass of A_2 , B_2 and C_2 are 70, 49 & 21 gm/mol respectively.

(1)50

(2)45

(3) 40

- (4) 37.5
- **13.** The equilibrium $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$ shifts forward if :-
 - (1) A catalyst is used.
 - (2) An adsorbent is used to remove SO₃ as soon as it is formed.
 - (3) Small amounts of reactants are removed.
 - (4) None of these
- **14.** Change in volume of the system does not alter the number of moles in which of the following equilibrium
 - (1) $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$
 - $(2) PCl₅(g) \rightleftharpoons PCl₃(g) + Cl₂(g)$
 - (3) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
 - (4) $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$
- **15.** Densities of diamond and graphite are 3.5 and 2.3 gm/mL.

$$C$$
 (diamond) \rightleftharpoons C (graphite)

$$\Delta_{\rm r}H = -1.9 \text{ kJ/mole}$$

favourable conditions for formation of diamond are

- (1) high pressure and low temperature
- (2) low pressure and high temperature
- (3) high pressure and high temperature
- (4) low pressure and low temperature
- **16.** The equilibrium $SO_2Cl_2(g) \rightleftharpoons SO_2(g) + Cl_2(g)$ is attained at $25^{\circ}C$ in a closed rigid container and an inert gas, helium is introduced. Which of the following statements is/are correct.
 - (1) concentrations of SO_2 , Cl_2 and SO_2Cl_2 do not change
 - (2) more chlorine is formed
 - (3) concentration of SO_2 is reduced
 - (4) more SO₂Cl₂ is formed

- 17. When $NaNO_3$ is heated in a closed vessel, oxygen is liberated and $NaNO_2$ is left. At equilibrium
 - (1) addition of NaNO₂ favours reverse reaction
 - (2) addition of NaNO₃ favours forward reaction
 - (3) increasing temperature favours forward reaction
 - (4) increasing pressure favours forward reaction
- **18.** Consider the equilibrium $HgO(s) + 4I^{-}(aq) + H_2O(s) \Rightarrow HgI_4^{2-}(aq) + 2OH^{-}(aq)$, which changes will decrease the equilibrium concentration of HgI_4^{2-}
 - (1) Addition of 0.1 M HI (aq)
 - (2) Addition of HgO (s)
 - (3) Removal of H₂O (1)
 - (4) Addition of KOH (aq)
- 19. The equilibrium constant for the reaction $N_2(g) + O_2(g) \rightleftharpoons 2NO(g)$ is 4×10^{-4} at 200 K. In presence of a catalyst, equilibrium is attained ten times faster. Therefore, the equilibrium constant in presence of the catalyst at 200 K is :-
 - $(1) 40 \times 10^{-4}$
 - $(2) 4 \times 10^{-4}$
 - (3) 4×10^{-3}
 - (4) difficult to compute without moe data
- **20.** In the reaction $X(g) + Y(g) \rightleftharpoons 2 Z(g)$, 2 mol X, 1 mol Y and 1 mole Z are placed in a 10 litre vessel and allowed to reach equalibrium. If final concentration of Z is 0.2 M, then K_c for the given reaction is :-
 - (1) 1.60

(2) $\frac{80}{3}$

(3) $\frac{16}{3}$

- (4) $\frac{100}{3}$
- **21.** 9.2 grams of $N_2O_4(g)$ is taken in a closed one litre vessel and heated till the following equilibrium is reached $N_2O_4(g) \rightleftharpoons 2NO_2(g)$

At equilibrium, $50\% \, N_2 O_4(g)$ is dissociated. What is the equilibrium constant (in mol litre⁻¹) (molecular weight of $N_2 O_4 = 92$):-

- (1) 0.1
- $(2) \ 0.4$
- (3) 0.2
- (4) 2

- 22. For which of the following reaction is product formation favoured by low pressure and low temperature?
 - (1) $CO_2(g)+C(s) \rightleftharpoons 2CO(g)$; $\Delta H^\circ = 172.5 \text{ kJ}$
 - (2) $CO(g)+2H_2(g) \rightleftharpoons CH_3OH_{(\ell)}$; $\Delta H^{\circ} = -21.7 \text{ kJ}$
 - (3) $2O_3(g) \rightleftharpoons 3O_2(g)$; $\Delta H^{\circ} = -285 \text{ kJ}$
 - (4) $H_2(g) + F_2(g) \rightleftharpoons 2HF(g); \Delta H^\circ = 541 \text{ kJ}$
- **23**. Two solid compounds X and Y dissociates at a certain temperature as follows

$$X(s) \rightleftharpoons A(g) + 2B(g); K_{p_1} = 9 \times 10^{-3} \text{ atm}^3$$

$$Y(s) \rightleftharpoons 2B(g) + C(g); K_{p_2} = 4.5 \times 10^{-3} \text{ atm}^3$$

The total pressure of gases over a mixture of X and Y is :-

- (1) 4.5 atm
- (2) 0.45 atm
- (3) 0.6 atm
- (4) None of these
- For the following reaction: 24.

 $A+2B \rightleftharpoons C+3D$; if the partial pressure of all the four substances A,B,C and D at equilibrium are 0.20, 0.10, 0.30 and 0.50 respectively, then calculate the equilibrium constant :-

- (1) 18.75
- (2)5.3
- (3) 11.25
- (4) None of these
- **25**. For the dissociation reaction:

$$NH_4HS_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$$

if $K_p = 25 \text{ atm}^2$; then the equilibrium pressure of the system is :-

- (1) 25 atm
- (2) 5 atm
- (3) 10 atm
- (4) 15 atm
- 26. Consider the equilibrium

$$CO_{2(g)} \rightleftharpoons CO_{(g)} + \frac{1}{2}O_{2(g)}$$

The equilibrium constant K is given by (when $\alpha < < 1$)

- (1) $K = \frac{\alpha^{3/2}}{\sqrt{2}}$
- (2) $K = \frac{\alpha^3}{2}$
- (3) $K = \frac{\alpha^{3/2}}{2}$
- (4) $K = \frac{\alpha^{3/2}}{\sqrt{3}}$

- For the reaction, $\mathrm{N_2O_{4(q)}}\mathop{\rightleftharpoons} 2\mathrm{NO_{2(g)}}$, If percentage 27. dissociation of N_2O_4 are 25%, 50%, 75% and 100% then the sequence of observed vapour densities d_1, d_2, d_3 and d_4 at these conditions will be :-
 - (1) $d_1 > d_2 > d_3 > d_4$ (2) $d_4 > d_3 > d_2 > d_1$
 - (3) $d_1 = d_2 = d_3 = d_4$ (4) None of these
- For the reaction $NH_4HS_{(s)} \rightleftharpoons NH_{3(g)} + H_2S_{(g)}$ in a 28. closed flask, the equilibrium pressure is P atm. The standard free energy change (ΔG°) of the reaction would be :-
 - (1) -RT lnp
 - (2) -2.303 RT(logP log2)
 - (3) -2RT (lnP ln2)
 - $(4) 2RT \ln P$
- 29. Consider the reactions :-

(i)
$$PCl_{5(g)} \rightleftharpoons PCl_{3(g)} + Cl_{2(g)}$$

(ii)
$$N_2O_{4(g)} \rightleftharpoons 2NO_{2(g)}$$

The addition of inert gas at constant volume:

- (1) will increase the dissociation of PCl_5 as well as N_2O_4 .
- (2) will reduce the dissociation of PCl₅ as well as
- (3) will increase the dissociation of PCl, while reduce the dissociation of N_2O_4
- (4) will not disturb the equilibrium of the reactions
- 30. When sulphur in the form of gaseous S₈ is heated at 900K, the initial pressure of 1 atm is decreased by 30% at equilibrium. This is because of conversion of some $S_{8(q)}$ to $S_{2(q)}$. Find the value of equilibrium constant for this reaction :-
 - (1) 1.96
- (2)4.48
- (3)5.56
- (4) 2.96

				ANSWER KEY			Exercise-I			
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	3	4	2	2	1	2	2	2	3	2
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	2	3	2	1	3	1	3	4	2	3
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	3	3	2	1	3	1	1	3	4	4